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1 Introduction

Space is a scarce resource in cities all over the world, so that it is crucial to use the
available space as efficiently as possible. Maximizing the efficiency of the transporta-
tion system, subject to the available space, is therefore one of the key challenges for
today’s city planners and policy makers. Against this backdrop, a growing and on-
going debate has emerged in recent years about how space that is dedicated to the
transportation system should be allocated to different modes of transport. In this
paper, we tackle this question from an economic perspective and analyze how much
of the available street space, i.e. the space dedicated to overground transportation,
should be allocated to cars, buses, bikes, and parking in order to maximize the
economic efficiency of a city’s transportation system.

When it comes to optimizing the efficiency of transportation systems, the policy
instruments that are traditionally at the forefront of public and scholarly debate in-
clude subsidization of public transport systems and optimizing fares and frequencies
(e.g. Basso and Silva, 2014; Borjesson et al., 2017; Parry and Small, 2009), imple-
menting congestion pricing for cars (e.g. Arnott et al., 1990; Lindsey and Verhoef,
2001; Vickrey, 1969), or setting parking fees (e.g. Anderson and de Palma, 2004; Inci,
2015). One particular policy instrument, however, is often neglected in the context
of optimizing transportation systems: the re-allocation of available street space to
the different transport modes. This instrument enables policy makers to alter the
street capacity for transport modes, and thereby impact on transport-mode-specific
travel times. Hence, re-allocating street space can lead to changes in the attractive-
ness of selected transport modes, and consequently, to changes in the performance
of the entire transportation system.

In recent years, policymakers have seem to become more aware that re-allocating
street space can indeed be an effective policy instrument. Prominent examples of
such re-allocations are often related to increasing the attractiveness of the more sus-
tainable modes of transport, especially walking and cycling. The city of Barcelona,
for example, introduced so-called “superblocks” consisting of up to nine housing
blocks, within which pedestrian and cycling traffic is prioritized by giving them
more street space, while pushing car traffic back to the streets on the perimeter
(Rueda, 2019). Increasing street space for cyclists was also a frequently applied
policy instrument during the Covid-19 pandemic, when many cities installed pro-
visional cycling lanes on street space that was formerly dedicated to cars (Buehler
and Pucher, 2021a, 2022). These so-called “pop-up bike lanes” have been found to
significantly increase cycling levels (Kraus and Koch, 2021).

Given the heightened awareness that re-allocating street space can be an effective

policy instrument, there is increasing discussion on how street space should ideally



be allocated. The complexity of this debate is outlined by Creutzig et al. (2020),
who discuss 14 different street space allocation mechanisms in terms of normative
and ethical principles. The discussed allocation mechanisms include allocating street
space so that it equals modal shares, is equally distributed across transport modes
(“Egalitarianism”), maximizes overall capacity, maximizes economic efficiency, or
minimizes environmental damage. However, no clear winner emerges from their
discussion, and depending on the weighting of the normative and ethical principles
considered, certain allocation mechanisms could be favored over others.

This discussion is further complicated by the fact that for certain allocation
mechanisms, it is unclear what the resulting street space allocation would look like.
For allocation mechanisms such as egalitarianism or the modal-share-based one,
it is straightforward to calculate the corresponding street space allocations for real-
world cities. When it comes to maximizing economic efficiency, however, deriving the
corresponding street shares is more complicated, due to the various channels through
which the street space allocation impacts on efficiency. As economic efficiency is
often used to evaluate the impact of transport policies (e.g. Bento et al., 2009; Parry
and Small, 2009; Yang et al., 2020), a lack of knowledge on the economic effects of
street space re-allocations creates an important gap in the literature. Against this
backdrop, we contribute to the literature in the following ways.

To the best of our knowledge, we are the first to provide an analysis of the eco-
nomic efficiency of street space allocations. More specifically, we derive the street
space allocations that maximize economic efficiency in the respective cities, and we
shed light on the channels through which street space re-allocations impact on eco-
nomic efficiency. In this context, we also analyze the interplay between re-allocations
and more traditional transport policies such as subsidization, adjusting frequencies,
or implementing congestion tolls.

In order to derive our results, we extend the theoretical mode choice model out-
lined in Basso and Silva (2014). This model conforms to the principles of utility
maximization and relates to economic efficiency through a measure of social wel-
fare, which consists of consumer surplus and net revenue from the operation of the
transportation system. While Basso and Silva (2014) and the related literature have
focused on space for cars and buses (e.g. Basso et al., 2011; Borjesson et al., 2017;
Currie et al., 2007; Zheng and Geroliminis, 2013), we additionally consider the space
for cycling and parking in our model, because these two types of space are often at
the forefront of discussions on street space re-allocations.

We then apply our theoretical model to two different cities, i.e. Berlin and
New York City. The initial model calibration ensures that important real-world
travel conditions and transport demand elasticities are reflected in the model. The

simulations for both cities then show that re-allocating street space from cars and



parking to buses and especially to bicycles increases the economic efficiency of the
transportation system. The extent of proposed street space re-allocations and the
subsequent efficiency gains are more pronounced in Berlin, mainly because transport
mode preferences in Berlin are less car-centric and individuals are more willing to
switch to other modes.

Our findings hence contribute an economic perspective to the ongoing debate on
the allocation of street space. Historically, this allocation is heavily skewed towards
cars and parking, but calls are being made for increasing the space for buses and
especially for bicycles, in order to improve sustainability in the transportation sector.
This is often accompanied by calls for greater “fairness of space” (Guzman et al.,
2021). Our objective function includes no such sustainability or fairness aspects,
but refers only to economic efficiency. Nonetheless, we find that more street space
should be allocated to buses and bikes, underlining that such re-allocations would
not only increase sustainability and fairness, but also economic efficiency in the
transportation sector.

The remainder of this paper is structured as follows. In Section 2 we set up
our theoretical model, and in Section 3 we analyze the economic efficiency of street
space allocations by applying the model to Berlin and New York City. Section 4
discusses further aspects of street space allocations, the limitations of our model,

and concludes.

2 Theoretical Model

2.1 Model introduction

In order to tackle the research question of an economically efficient allocation of
street space, we build upon the model of Basso and Silva (2014) and also look at a
representative kilometer of street space and one day of operation. This street space
is used by utility-maximizing individuals, whose travel-related choices are reflected
in a nested logit model. The individuals first choose between traveling in the peak
or off-peak period. Then, they choose between traveling by car, bus, or bike. If
individuals decide to travel by car and have no private parking space available, they
also have to choose between on-street or off-street parking. Furthermore, individuals
always have the outside option of not traveling at all.!

We then simulate various policy scenarios by applying the model to Berlin and
New York City. One way for the social planner to maximize social welfare is by

optimizing over a set of traditional policy variables. For car traffic, the planner can

'We label the outside option “no travel”, but this option generally relates to the set of all
alternatives with a fixed utility value. Hence, the outside option could also capture a subway
system with fixed prices and service quality.



set a congestion toll in each period, the costs of on-street parking, and the costs
of off-street parking. For bus traffic, the planner can set the bus frequency in each
period, the bus fare in each period, the bus capacity, and the number of equidistant
bus stops per km.

Most importantly for our research question, however, the social planner can also
allocate the available street space across different transport modes. We define street
space as the available area that city planners can use to accommodate different
modes of transportation. In our model, the planner can then choose the share of
street space that is exclusively allocated to cars, buses, cyclists, and parking. This
allocation directly impacts on the travel times for each transport mode, as well as
on the possibilities to park on-street. Therefore, a sensible allocation of street space
is critical to maximizing the efficiency of the overall transportation system and,

consequently, social welfare.

2.2 Model scope

As we focus on the allocation of street space, we only consider overground trans-
portation in our model. For simplicity, we also assume that sidewalks are not part of
the allocatable street space, more specifically that sidewalks have already been built
and that this space cannot be allocated to other modes of transportation. First,
this ensures that walking, e.g. to bus stations or off-street parking garages, is always
possible. Second, sidewalks contribute to mobility equity, because they enable the
more vulnerable groups to remain mobile (Clarke and Gallagher, 2013). For these
individuals, enabling safe travel is more important than travel speed. Third, pedes-
trian spaces perform social and aesthetic functions that are unrelated to movement,
for example providing space to communicate and relax (Nello-Deakin, 2019). Such
essential functions of pedestrian street space would be difficult to capture in an
economic model like ours.

In the course of our analysis, we mainly consider situations in which car traffic,
bus traffic, and bicycle traffic are separated from each other. Even though mixed
traffic, i.e. when two or more transport modes share the same street space, is still
prevalent on many streets worldwide, there is evidence that separated traffic has
advantages over mixed traffic. In particular, separated bike lanes are found to be
safer (e.g. Lusk et al., 2013; Petegem et al., 2021), more inclusive for occasional and
female cyclists (Aldred et al., 2017; Sanders and Judelman, 2018), and generally
preferred by cyclists and potential cyclists (Winters et al., 2011). Even non-cycling
drivers prefer separated bike lanes (Sanders, 2016). Additionally, exclusive bus lanes
can reduce traffic accidents (Goh et al., 2013). They also reduce bus travel times
and are found to be undersupplied from a welfare perspective (Russo et al., 2022).

Hence, we mainly refrain from including mixed traffic in our model, because doing



otherwise would run counter to our original goal of selectively allocating street space
to specific modes of transport. We relax this restriction, however, in one sensitivity

analysis.

2.3 Demand

In our model, we differentiate between two exogenously defined groups of individuals.
Group 1 has no access to a private parking space, and Group 2 has such access. This
differentiation is necessary to reflect the fact that individuals of Group 1 still have
to decide where they park when choosing to go by car, whereas such a decision is not
necessary for individuals of Group 2 who can simply park in their private parking
space. The respective three-stage and two-stage decision processes of the two groups

are outlined in Figure 1.

Group 1 Group 2
Peak Off-Peak No travel Peak Off-Peak No travel
Bike Car Bus Bike Car Bus Bike Car Bus Bike Car Bus

On-street  Off-street On-street  Off-street
parking parking parking  parking

Figure 1: Decision Trees

At the upper level, the individual chooses between three nests: traveling in the
peak period, traveling in the off-peak period, or not traveling at all. This decision
is based on the expected utility of the respective nests. At the medium level, the
individual then chooses between the three different transport modes, conditional
on the earlier choice of the nest. The available transport modes are car, bus, and
bike. This decision is based on the (expected) utility of each alternative. At the
lower level, a car traveler of Group 1 additionally chooses between on-street parking
or off-street parking. Again, this decision is based on the utility of each parking
alternative.

In this section, we focus on the three-stage decision process for individuals of
Group 1. We refrain from explicitly outlining the two-stage decision process for
individuals of Group 2, as it is very similar, and only the parking decision at the
lower level is missing.

Before outlining the relevant utility components at each of the three nesting lev-
els, we would like to briefly discuss the chosen nesting structure. In nested multino-
mial logit (MNL) models, transport modes with similar characteristics are grouped
in order to overcome problems caused by the Independence of Irrelevant Alterna-
tives (ITA) assumption of non-nested MNL models. Koppelman and Bhat (2006),



for example, show that transport modes such as bus and light rail might be grouped
as a public transport nest, as they share certain characteristics. In our model, how-
ever, the three transport modes of car, bus, and bike are sufficiently distinct so that
grouping transport modes would not be appropriate.? On the other hand, driving
by car and parking on-street shares many characteristics with driving by car and
parking off-street. Due to this high degree of similarity, these two alternatives are
grouped together in a nest.

We now continue by describing the relevant utility components at each of the
three nesting levels, beginning at the lowest level with the utility that an individual

from Group 1 derives from parking. It can be written as

Uql,Car,p =A- COStq,Car,p + Bq,Car S - Wtzn (1)
q € M, = {Peak, Off-peak}
p € M, = {On-street, Off-street}

where costy carp are the monetary costs that accrue when parking, A is the cost
parameter, wt, is the walking time associated with parking (e.g. walking from the
parking space to the destination), f;cqr is the marginal utility of time for the
transport mode car in time period ¢, and the parameter ¢o > 1 reflects the fact that
time spent walking is perceived as worse than in-vehicle travel time.

The nested structure implies that the decision at each level is modeled as multino-
mial logit. Thus, the proportion of travelers that choose parking mode p, conditional

on the choice of period ¢ and choosing the transport mode car, is

1.1

oxP (uz Uq,Car,p)
171 ’

ZSEMP exp <m ’ Uq,Car,s)

q€ My, peM,.

1
Ppl(q,car) =

Here, iy is the logsum parameter at the lower level and represents the heterogeneity
of parking alternatives. The logsum parameter is generally bounded by zero and one,
which ensures that it conforms to random utility maximization principles. When
p; = 1, there is no correlation between the parking alternatives. In such a case, the
nested model would collapse to the non-nested model, which would be equivalent to
having four alternatives at the medium level (i.e. car and on-street parking, car and

off-street parking, bus, bike). For lower values of 1, the correlation between parking

2The three transport modes in our model differ with respect to costs, comfort, safety, and
many other factors. Car drivers are, for example, not physically stressed (i.e. experience very little
physical exhaustion), but shielded from direct contact to other traffic participants; bus passengers
are neither physically stressed nor shielded from direct contact to other traffic participants; cyclists
are physically stressed, but shielded from direct contact to other traffic participants.



alternatives increases and they become better substitutes. When pu; converges to
0, both parking alternatives become perfect substitutes and everyone chooses the
alternative with the higher value (Anderson and de Palma, 1992; Koppelman and
Bhat, 2006).

Next, we can move to the medium level. For this level, the expected utility of
the parking nest, which depends on the utilities of both parking alternatives, can be

calculated with the logsum formula:
1 1 1
Aq,Parking = - In Z eXp | —- Uq,Car,s (3)
seM, H

The utility of choosing the car is then the utility of traveling by car, plus the expected

utility of parking. This can be written as follows:

1 1 1
Uq,Car = Hq,Car +A- COStq,Car + /Bq,C'ar : gtq,Car + Aq,Parking? (4)
q € My,
where 93 Car 15 the alternative-specific constant, cost, cqr are the monetary costs, and

gtq,car is the generalized travel time for traveling by car in period ¢q. The monetary
costs of the car consist of operational costs (maintenance, depreciation, fuel etc.) and
a potential congestion toll. These costs are evenly allocated across all car passengers.
Additionally, each transport mode is influenced by the alternative-specific constant
Hém, which captures hard-to-measure factors such as comfort, perceived safety, or

the general preferences for selected modes of transport. For Group 2, the utility of

choosing the car is then very similar, but without the expected utility of parking:

Uq2,Car = HZ,Car +A- COStq,Car + 5(],0‘“” ) gtq,Cm‘? (5)

q€ M,

For bus and bike, the utility for individuals of Group i € {1,2} can similarly be

written as:

Uém = Hém + X - costym + Bym - 9tgm. (6)
q € M,;, m € {Bus, Bike}.

When choosing the bus, the only monetary cost is the bus fare. For bikes, operational
costs mainly consist of maintenance and depreciation. The generalized travel time
consists of in-vehicle time for all modes, as well as waiting and walking time for the
bus (from departure location to bus station and from bus station to destination).

The decision at the medium level is then again modeled as a multinomial logit



and can be written as

1 i
i P <le ' qu) (7)
mlg N
ZT‘EMm exp <,u% ' U&")

qe My, me My,

where i, is the logsum parameter at the medium level, reflecting heterogeneity
between transport modes. It is again bounded by zero and one, but it must also
conform to p, > u; in order to be consistent with utility maximization. This con-
dition indicates that the parking alternatives in the lower nest are closer substitutes
than the transport mode alternatives in the medium nest (Koppelman and Bhat,
2006).

We can now move to the upper level, where the decision is based on the expected
utilities of the medium level. These utilities are again calculated with the logsum

formula and can be written as:

Al = i - In ( > exp (; - U(jr)> (8)

TEMm m

; )
notravel

individuals who choose between traveling in period g or not traveling at all is given
by

The expected utility from not traveling at all (A is set to zero. The share of

G — (- 4) (9)
ZreMn exp (i : A?)

n € M, = {Peak, Off-peak, no travel}

Here, u, represents the heterogeneity between periods. The logsum parameter i,
is again bounded by zero and one, but must conform to i, > py, so that transport
mode alternatives in the medium nest are closer substitutes than alternatives in the
upper nest (Koppelman and Bhat, 2006).

The number of individuals per hour and kilometer who choose transport mode

m in period ¢ can then be written as
2 . . .
Yom = (Z YtPy- fn|q> /HY, (10)
i=1
g€ My, me My,

where Y is the number of individuals per kilometer who belong to Group i, and H4Y



is the number of hours in period ¢. The number of individuals who do not travel is

2 i i
Yootravel = Zi:lY " M notravel

2.4 Monetary costs of traveling

In order to shed more light on the components of the utility functions in Equations
1, 4, 5, and 6, we now continue with a description of the actual monetary costs that
are reflected in the cost-variables.

When an individual of Group 1 chooses to travel by car, he has to pay for parking.
This parking fee per car and hour can differ between on-street parking (Pperkon) and
off-street parking (Ppgrkog). In combination with the average parking duration d,
and average car occupancy a, total parking costs per person amount to Ppgrkon - dp/a
for on-street parking, and Pparkof - dp/a for off-street parking.

In addition to the costs of parking, car travelers also have to pay operational
costs (¢ear), which include those for fuel, lubricants, maintenance, depreciation etc.,
and they have to pay a congestion charge (P, cqr) if congestion pricing is active.
Both cost components are measured per kilometer and car. The individual driving
costs (excluding parking costs) for a trip with length [ and with equal cost allocation
among passengers can then be written as costy car = (Pg,car + Cear) - 1/a.

Bus travelers only pay a bus fare for each kilometer (Pg pys), so that the costs
for each bus trip are costy pus = Py pus - . For cyclists, operational costs consist of

maintenance and depreciation, so that costy pike = Cpie - [

2.5 Transport times

The transport time functions that enter the utility functions in Equations 1, 4, 5,
and 6 indicate that less dedicated street space or more people using that street space

can lead to congestion, thereby reducing travel speed and increasing travel time.

2.5.1 Car

Parking We assume that on-street parking is always possible in the direct vicinity
of the uniformly distributed departure and destination locations. Thus, on-street
parking does not require additional walking time in our model, i.e. wtpgkon = 0.
Off-street parking spaces such as parking garages are, however, not always in the
immediate vicinity of the departure and destination locations. The average walking
distance between the evenly distributed off-street parking spaces (sparkog) and the
uniformly distributed departure locations is 1/(4Sperkofr). The same holds for the
distance between off-street parking spaces and destination locations. With an aver-

age walking speed of V,,, the average additional walking time for off-street parking

is wtpa,nkoﬁ = 1/(2 . sparkoﬁ . Vw).



We assume that there is no cruising for parking in our model. This is due to the
fact that the supply of parking spaces is always sufficient to serve parking demand
(see also the explanations for Equations 18 and 24), and the assumption that cars are

efficiently guided to open parking spaces through a smart parking guidance system.

In-vehicle travel time The walking time associated with parking is already ac-
counted for at the lower level, so that we only need to include the remaining in-vehicle
travel time at the medium level. Thus, the generalized travel time for a car driver
at the medium level is defined as gt cor = tg,car - [, Where ty o is the in-vehicle
travel time per kilometer in period ¢. This time depends on overall car flow, i.e. the
number of cars per hour, and the capacity of the street space that is dedicated to
cars. Car flow is defined as [ - Yy cor/a, with Y, o as the number of car travelers
per hour and kilometer in period ¢, and a as the average car occupancy. The street
space dedicated to cars is defined as the fraction carlane of available street space
capacity C. The car travel time is calculated according to the well-established BPR

formula (Bureau of Public Roads, 1964) and can be written as

LYy car/a\?
tgear =tf |1+ a- [ —22— 11
sear = ( ta <carlane -C ’ (11)
where 27 is the free-flow travel time in hours per kilometer, and o and 3 are param-

eter values for fitting the function. The exact parameterizations of BPR functions

are based on the related literature and outlined in Appendix A.1.2.

2.5.2 Bus

Similar to Basso and Silva (2014), the generalized travel time for a bus user in period
q is defined as gtq pus = tgbus * | + @1 - tgw + @2 - tace, Where t, s is the in-vehicle
travel time, t,,, is the waiting time, and t,.. is the walking time to and from the
bus stops. The parameters ¢ > 1 and ¢ > 1 indicate that the time spent waiting

and walking is perceived as worse than the in-vehicle travel time.

Waiting and walking The time spent waiting for the bus (¢,,.,) depends on the
frequency of buses (f?), and can be written as t,,, = ¥/ f9, where ¥ is the fraction
of the interval between two buses that constitutes waiting. We assume that 9 = 0.5,
implying that arrival times at the bus stop are uniformly distributed.

Similar to the walking time that accrues when parking, the additional walking
time when going by bus can be written as tocc = 1/(2 - Spusstop - V), where Spyssiop

reflects the number of evenly distributed bus stops.

10



In-vehicle travel time The in-vehicle travel time for buses can be written as

7.0 us k g Y, Uus
tq7bus = tf : <1 +o- <fb()> ) + Sbusstop * <q7b “teb + td) : (12)

buslane - C f9 - Shusstop

The first term on the right-hand side of this equation is again based on the BPR
function. Here, travel time depends on the number of buses per hour (f?) and the
capacity of the street space that is dedicated to buses (buslane - C'). The overall
street space capacity C is measured in car units and, as buses require more space
than cars, the number of buses has to be converted into car units. This is done with
the equivalence function by,s(k), which increases in bus capacity k, i.e. the size of
the bus.

The second term reflects the additional time that a bus spends at each bus stop.
It consists of boarding time and congestion at the bus stop, i.e. queuing to get in
and out of the bus. The boarding time for each passenger is denoted as tg, and
subsequently multiplied by the number of passengers boarding a bus at a bus stop,
which is given by Yy pus/(f9 - Spusstop). The congestion at the bus stop is given by
tq, which is a nonlinear function that depends on frequency, bus stop capacity, and
numbers of passengers. The underlying formulas are not reported here for reasons
of clarity, but they are based on microsimulations by Fernandez et al. (2002) and
outlined in Basso and Silva (2014).

2.5.3 Bike

When traveling by bicycle, we assume that the generalized travel time for bikes
consists only of the time actually spent riding the bike, so that gty pire = T4 pike - [
This implies that bikes can always be parked at the desired location and that no
additional walking is needed.

As outlined in an empirical study by Paulsen et al. (2019), congestion effects arise
primarily from heterogeneity in cyclists’ speed preferences, leading to a slowdown if
scarce bike lane capacity prevents overtaking of slower cyclists. This can again can
be modeled with a BPR function:

LYy bie - Dire \”
topike =17 |1 L v . 1
%,bik ! ( o < bikelane - C (13)

Hourly bicycle flow is given by [ Y, 1. and, as bicycles require less space than cars,
they are converted into car units with the factor by;.. The capacity of the street
space that is dedicated to bikes is bikelane - C.
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2.6 Revenue and operational costs

In the following, we calculate the daily revenue and costs that accrue when operat-
ing one kilometer of the entire transportation system. We again start by looking at
the car, for which revenue can be generated from parking and tolls. Parking rev-
enue is generated from the fees for on-street parking (Pparkon) and off-street parking
(Pparkogr)- In combination with the average parking duration and the number of

parking cars per period, daily parking revenue per kilometer can be written as

T€V park =L parkon * dp . Z (Yq,canparkon : Hq/a) (14)
q

+ Pparkoﬁ . dp : Z (Yq,car,parkoﬁ : Hq/a’) .
q

If tolls are active, each car has to pay P, .. for each kilometer in period g. This

would result in daily toll revenue per kilometer of

reVioll = Z P scar * Yq,ca’r -HY. l/a (15)
q

For buses, revenue can be generated from ticket fares P, 3,5 that each passenger
has to pay per kilometer. The daily bus fare revenue per kilometer can be written

as
T€Vpus = ZP Jbus ° Yq,bus -H? . (16)
q

In addition to generating money, the operation of the transport system also costs
money. For parking, we consider costs for construction, operation, and maintenance

of on-street and off-street parking spaces.® Parking costs can then be written as

COStparking = Cparkon * Bparkon + Cparkoff * Bparkoﬁ (17)

where cparkon and cparkof are the daily costs for the construction, operation, and
maintenance of each on-street and off-street parking space. Bpgrkon and Bperkof
denote the number of on-street and off-street parking spaces that are needed to
allow parking for each car. To calculate the maximum number of parked cars, we
must consider that cars park for the duration d,. The number of cars that are
parked in a given hour is then determined by the cars that started parking in that

hour, and the cars that started parking in the previous d,, — 1 hours. Consequently,

3We do not include costs for acquiring land in our model. First, against the backdrop of re-
allocating the available street space, we assume that our representative kilometer of street space is
given, so that no costs would accrue for acquiring this land. Second, off-street parking is assumed
to be in underground parking garages, for which no land costs would accrue (Litman and Doherty,
2009).
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the maximum number of parked cars also depends on the sequence of peak and
off-peak periods throughout the day. This number is usually determined by the sub-
sequence of length d), that contains the most peak hours (3% ), but it could also be
determined by the sub-sequence that contains the most off-peak hours (n’g]‘?_ peak)'4
Hence, it follows that

By, = mfw{ (YPeak,car,p - NPeqi + YOI ~peak,car,p * (dp — 1pear)) /a, (18)
(YOﬁ*peak,car,p : nrgg’{peak + YPeak,car,p . (dp — nrggc{peak))/a}.

The costs for running the congestion pricing system (e.g. traffic control, main-
tenance, etc.) are assumed to be the fraction 7, of toll revenue (Basso and Silva,
2014).

The daily operation of the bus system costs

G = Gy(k) - Bpus + Gy(k) > _-f7- HI- L. (19)

The first term on the right-hand side consists of the costs for each bus per day
(Gp(k)), which depends (linearly) on bus size k. This is multiplied by the required
bus fleet Byys = mazy{f? -ty pus} - L, where L is the total distance that a bus has
to drive during one cycle. The formula for By, also indicates that the required bus
fleet depends on the period during which more travelers choose to go by bus, which
consequently leads to idle capacity in the other period. The second term consists of
the costs per vehicle kilometer Gy, (k), multiplied by the daily vehicle kilometers. As
we generally report revenue and costs per kilometer and day, we still need to divide
G by L. When doing so, L disappears from Equation 19, thereby also eliminating
the need to estimate this parameter. The resulting costs per day and kilometer for
operating the bus system are then defined as costy,s = G/ L5

We do not include the operational costs for each driving lane that are caused by
traffic control (e.g. traffic lights, signaling etc.), because these costs arise from the
holistic optimization of the entire transportation system, and are therefore difficult

to allocate to the individual modes of transport.

4If the parking duration dp is 7 hours, we look for the 7-hour-sequence that contains the most
peak periods, and the one that contains the most off-peak periods. Given a 20-hour sequence of
(0,0,0,P,P,0,0,0,0,0,P,P,P,P,0,0,0,0,0,0; with P=peak and O=off-peak), a 7-hour-sequence
would consist of a maximum of 4 peak periods (nGOF- e = 4), and a maximum of 7 off-peak
periods (5§ pear = 7). If the parking duration is not an integer value, we round it up and look at
sub-sequences of length [d,]. Additional information is provided in Appendix A.1.1.

®The underlying formulas for G4(k) and G, (k) are from Basso and Silva (2014).
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2.7 Consumer surplus and social welfare function

Next, we calculate daily consumer surplus (CS) and social welfare (SW') for one
kilometer of our representative street space. In the nested logit model, consumer

surplus is calculated through the logsum formula (Anderson and de Palma, 1992):

Cs = Z (_YA e+ In [Zn:exp (:u . A@) ) (20)

Finally, social welfare consists of consumer surplus, as well as the revenue and

costs of operating the transport system for one kilometer and one day. It can be

formalized as

SW =CS + (revpark + reviell - (1 - 77toll) + revhys (21)

— COStpgrk — costbus) - mepf,

Here, the net value of revenue minus costs is multiplied by the marginal costs of

public funds (mepf).

2.8 Optimization constraints

In our model, we optimize social welfare over various policy variables. As part
of this optimization process, there are several constraints that must always hold,
irrespective of the actual policy scenario that we analyze. The first set of these
constraints stems from the fact that travel demand depends on travel times, but
also impacts on travel times through congestion effects. Similar to Basso and Silva
(2014), we solve this fixed-point problem by optimizing over demand, while including

equilibrium equations as constraints. These constraints can be written as

0<Y! <Y' Vie{l,2}, VneM, meM, (22
Yo =Y Py Ph/HY,  Vie{l,2}, Vne M, me M,
When it comes to allocating street space, there are two constraints that have to
be considered. First, the total size of the dedicated lanes cannot be larger than the
overall available street space. Thus, the non-negative shares of each dedicated lane

are constrained by
carlane + buslane + bikelane + parklane < 1. (23)

In our model, the policy variables carlane, buslane, bikelane, and parklane corre-
spond to fractions of total street space that are dedicated to each transport mode.

Hence, these variables can take any value between 0 and 1, implying that street space
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can be divided continuously, similar to Zheng and Geroliminis (2013) or Borjesson et
al. (2017). We think that such a continuous allocation is a reasonable assumption,
because we explicitly model traffic for a representative kilometer of street space.
This kilometer is then representative of a larger street network in which parallel
streets can be grouped, so that some streets could be dedicated exclusively to buses,
and parallel streets to cars. Of course, it is not necessary to always dedicate entire
streets to one transport mode, because dedicating selected lanes (e.g. bus lanes or
bike lanes) to certain transport modes is also possible. In some cities, comparable
designs of street networks have already been put into practice, and the resulting
wide range of possible street space allocations then underlines the generality of our
continuous optimization of street space allocation. We verify the general results
from this continuous street space allocation, however, by also running a scenario
where we impose a minimum share of street space that must be allocated to each
purpose (please refer to Footnote 8 for a more detailed description of this scenario
and its results).

Second, we must ensure that there is always enough on-street parking space to
accommodate every car driver who chooses to park on-street. Hence, the available
street space in each hour must be at least equal to the space required by on-street

parking cars. This can be formalized as
Boparkon - Sreq < parklane - w - 1000, (24)

where s,¢, is the space that a car requires for parking [m?/car], and w is the width
of the street [m], so that w - 1000 equals the area of our representative kilometer of
street space in m?.

Moreover, bus fares, congestion tolls, and parking fees are constrained to be non-
negative. Bus frequency must be positive, but less than the capacity of bus stops.%
Additionally, the bus size has to be sufficiently large so that all passengers can be

transported in both periods. Thus, bus capacity must be

Y,bus 3/

This constraint is binding in at least one period, but there might be idle capacity in

the other period (usually the off-peak period).

5To calculate bus stop capacity, we follow the microsimulations that are outlined in Basso and
Silva (2014).
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3 Analysis

3.1 Setting

We apply our theoretical model to the cities of Berlin and New York City. These
cities are chosen because they share important characteristics that motivate the
analysis of street space allocation. First, they are severely affected by congestion, as
shown by travel times during peak hours in 2019, which were 32 % and 37 % longer,
respectively, than under uncongested conditions (TomTom, 2019). Second, street
space in both cities is strongly skewed towards cars and parking, which take up
more than 50 % of total street space, and more than 90 % of the street space consid-
ered in this model, i.e. cars, parking, buses, and bikes (Agentur fiir Clevere Stédte,
2014; Transportation Alternatives, 2021). Third, both cities have conducted larger
projects to re-allocate street space from cars to bikes and pedestrians, especially
during the Covid-19 pandemic (Buehler and Pucher, 2021a, 2022). These character-
istics highlight the relevance and importance of studying the effects of street space
re-allocations for both cities.

Additionally, however, these two cities are also chosen because they differ with
respect to their attitude towards cycling. Considering only trips by car, bus, and
bike, the share of cycling is 34.8 % in Berlin, and only 4.3 % in New York City, indi-
cating that cycling is a more established transport mode in Berlin. This difference
allows us to study whether the role of cycling might influence the economic effects
of street space re-allocations, and the analyses of these two cities may therefore be

informative for policymakers in cities with varying degrees of cycling intensities.

3.2 Model calibration

To ensure that our model reflects the actual choice behavior and travel conditions
in Berlin and New York City, we conduct separate calibrations for both cities in a
manner similar to Basso and Silva (2014) and Borjesson et al. (2017). More precisely,
we undertake three main steps, which are briefly summarized below and outlined in
more detail in Appendix A.

First, we set many model parameters according to the values that we calculated
from city-specific travel surveys or found in the relevant transport literature.

Second, we calibrate the remaining model parameters in such a way that choice
behavior in our model would reflect real-world choice behavior as closely as possible.
In particular, the calibration ensures that the actually observed values for our policy
variables would lead to the actually observed modal shares in the cities, and that
important travel elasticities are similar to the values reported in the literature.

Third, we check the validity of our calibration by computing various travel elas-

ticities and cross-elasticities from our calibrated model and comparing them to the
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values from the literature. This comparison shows that our calibrated choice model
indeed reflects real-world choice behavior very well.
The calibrated models for Berlin and New York City are subsequently used to

evaluate the economic effects of street space re-allocations in both cities.

3.3 Main scenarios

In order to get a better understanding of the economic effects of street space re-

allocations, we analyze four counterfactual scenarios:

1. REFERENCE: The street space allocation and most traditional policy variables
are similar to the real-world situations in Berlin and New York City.” The
main deviation from reality is then our focus on separated traffic. Hence, this
counterfactual scenario is an ideal starting point for evaluating the effects of

various transport policies and street space allocations under separated traffic.

2. TRADITIONAL: The street space allocation is still similar to the real-world
situation, but the social planner can now optimize welfare over traditional
policy variables. This allows us to evaluate by how much efficiency could be

improved if the street space allocation remained fixed.

3. SPACE: Most traditional policy variables are similar to the real-world situation,
but the social planner can now optimize welfare over the street space alloca-
tion. This allows us to evaluate by how much efficiency could be improved if

traditional policy variables remained fixed.

4. TRADITIONAL -+ SPACE: In this scenario, the social planner can optimize
welfare over the choice of the street space allocation, as well as over traditional
policy variables. From a welfare perspective, this scenario then reflects an ideal

allocation of street space.

Besides the optimization constraints that must always be satisfied (see Section 2.8),
we then include additional constraints to model the above scenarios. These addi-
tional constraints generally fix the street space allocation or selected policy variables

to specific values, dependent on the respective scenarios.

"Traditional policy variables include car tolls, bus fares, and bus frequencies for peak and off-
peak hours; parking fees for on-street and off-street parking; bus size and the number of bus stops
per kilometer. We label these variables as “traditional” because there already is extensive literature
on their economic effects. In Scenarios 1 and 3, the parking fees and bus size cannot be fixed to
their real-world values, but have to be chosen by the model. Otherwise, the inefficient usage of
parking space and bus capacity would lead to a model optimization failure.
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3.4 The impact of street space allocation on economic efficiency

An overview of the simulation results for the four main scenarios in Berlin and New
York City is illustrated in Figure 2, where street space allocations and their efficiency
gains with respect to the REFERENCE scenario are depicted. In the REFERENCE
scenario in Berlin, 4.9 % of street space is allocated to bikes, 1.3 % to buses, 62.6 %
to driving cars, and 31.2 % to parking (based on Agentur fiir Clevere Stadte, 2014).
In New York City, 1.2 % is allocated to bikes, 1.7 % to buses, 69.4 % to driving cars,
and 27.7% to parking (based on Transportation Alternatives, 2021).

Berlin New York City

Efficiency Gains
(in $ per km & day)

A

4. TRADITIONAL + SPACE (+52.6
I

3. SPACE :-1-48.8: — 50,000 —
I

—+ 4- TRADITIONAL + SPACE ‘+28.7)

— 25,000 —

1 2. TRADITIONAL = +19.1 :
I

2. TRADITIONAL =+9.5= 1 3. SPACE =+9.4=
o u

1. REFERENCE 1. REFERENCE
D - 0 —

Share of street space: M Bicycle Bus M Car M Parking

Figure 2: Efficiency gains of main scenarios
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If policy makers have to take the current street space allocation as given and
can optimize only over traditional policy variables (Scenario 2), the efficiency of the
transportation system can be improved by $9,455 per kilometer and day in Berlin,
and by $19,111 in New York City.

In Scenario 3, the traditional policy variables are fixed to their real-world values
and policy makers can optimize only over the street space allocation. This would
result in strong re-allocations in Berlin, with efficiency gains of $48,795. On the
other hand, the optimal re-allocations in New York City are less extreme and result
in lower efficiency gains of $9,428.

The greatest efficiency gains are realized in Scenario 4, in which policy makers can
optimize over traditional policy variables as well as over street space allocation. In
Berlin, the street space for bikes increases to 45.0 % and for buses to 2.2 %, whereas
the space for driving cars decreases to 27.7%, and for parking to 25.2%. This
allocation then leads to efficiency gains of $52,610 per kilometer and day, relative
to the REFERENCE scenario. In New York City, the maximum attainable efficiency
gain is $28,715, and thus less extreme than in Berlin. This is due to the fact that
the accompanying street space re-allocations are also less extreme. The street space
for cars is only reduced to 67.3% and for parking to 23.3%. The space for buses
increases to 4.8 %, and for bikes to 4.6 %.8 The results for both cities underline the
importance of street space re-allocation as an effective policy instrument. Leaving
the allocation of street space untouched wastes significant potential for improving

the efficiency of transportation systems.

3.5 Main results for Berlin
3.5.1 Analysis of the underlying economic channels of impact

We now proceed by shedding more light on the underlying economic channels that
lead to the efficiency effects illustrated in Figure 2. We explain and discuss these
channels by looking at the changes between the respective scenarios. This also in-
cludes an examination of policy variables, modal shares, travel speed, and monetary
outcomes of the transportation system, which are outlined in Table 1. All monetary
values in the subsequent analyses, including the monetary values from other sources,
are presented in 2020 US dollars.

8 The continuous allocation of our representative street space allows for very small values, e.g.
2.2% or 4.6 %. To test the results of this continuous allocation, we run a scenario where we impose a
minimum share of 1/8 that must be allocated to each purpose. This minimum would correspond to
one entire lane of two parallel three-lane corridors with adjacent parking lanes. In Berlin, allocating
44.2 % to bicycles, 12.5% to buses, 25.5% to cars, and 17.8% to parking increases social welfare
by $50,647. In New York City, an allocation of 12.5 % to bicycles, 12.5% to buses, 59.6 % to cars,
and 15.4 % to parking increases social welfare by $22,474. Hence, imposing a minimum share that
must be allocated to each purpose does not change the direction of our overall results.
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Table 1: Main results (Berlin)

Scenario REFERENCE ~ TRADITIONAL SPACE TRADITIONAL + SPACE
Social welfare 0.000 9455.253 48795.292 52610.463
Consumer surplus 0.000 161.766 21780.789 28276.423
People 12500 12500 12500 12500
Travelers 11906.277 11902.592 12057.977 12093.767
Share of space for bicycles 0.049 0.049 0.492 0.450
Share of space for buses 0.013 0.013 0.013 0.022
Share of space for cars 0.626 0.626 0.260 0.277
Share of space for parking 0.312 0.312 0.235 0.252
Bus fare (peak) 0.324 0.000 0.324 0.000
Bus fare (off-peak) 0.324 0.000 0.324 0.000
Car toll (peak) 0.000 0.716 0.000 0.672
Car toll (off-peak) 0.000 0.000 0.000 0.000
Parking fee (on-street) 1.208 1.063 1.530 1.156
Parking fee (off-street) 0.000 0.000 0.728 0.447
Bus frequency (peak) 12.000 16.464 12.000 19.952
Bus frequency (off-peak) 8.000 13.545 8.000 17.369
Bus size 62.185 72.731 45.560 43.325
Number of bus stops 3.800 2.945 3.800 2.746
Share of peak travelers 0.379 0.333 0.509 0.482
Share of off-peak travelers 0.573 0.619 0.455 0.486
Share of non-travelers 0.047 0.048 0.035 0.032
Modal share of car (peak) 0.654 0.496 0.193 0.156
Modal share of bus (peak) 0.160 0.293 0.087 0.146
Modal share of bicycle (peak) 0.186 0.212 0.720 0.698
Modal share of car (off-peak) 0.655 0.617 0.318 0.357
Modal share of bus (off-peak) 0.095 0.151 0.089 0.138
Modal share of bike (off-peak) 0.251 0.232 0.593 0.505
Speed of cars (peak) 17.947 41.088 20.400 39.412
Speed of buses (peak) 22.706 20.688 24.415 27.460
Speed of bicyles (peak) 8.379 8.345 19.012 18.999
Speed of cars (off-peak) 42.426 41.540 45.898 40.225
Speed of buses (off-peak) 25.833 25.983 26.797 30.859
Speed of bicycles (off-peak) 11.680 11.675 19.997 19.997
Used parking spaces (on-street, maximum) 1.000 1.000 1.000 1.000
Used parking spaces (on-street, minimum) 0.674 0.960 0.661 0.960
Share of on-street parking (peak, all travelers) 0.095 0.125 0.181 0.220
Share of on-street parking (off-peak, all travelers) 0.090 0.119 0.174 0.212
Net revenue of operating transport systems -20552.954 -12471.661 2937.918 607.081
Parking system: revenue 4221.988 4275.866 10770.518 8026.291
Parking system: costs 25772.224 19271.295 8559.526 7686.651
Toll system: net revenue 0.000 4362.352 0.000 1867.419
Bus system: revenue 2128.230 0.000 1702.326 0.000
Bus system: costs 1130.948 1838.583 975.399 1599.978

The street space shares are adjusted for car, bus, bike, and parking. Space for pedestrians and others is excluded, but takes
up 33 % and 6 % of total street space in reality.
The modal shares are adjusted for the three overground transport modes car, bus, and bike. Overground transport makes

up 50.6 % of overall traffic.

Reference First, it should be noted that our REFERENCE does not aim to repre-

sent the real world as accurately as possible, but intentionally deviates from reality

and should therefore be considered a counterfactual scenario.

The most important deviation from the real world stems from the fact that we

only model separated traffic, which was motivated and discussed in Section 2.2.

Hence, buses and bikes actually have less street space in our model than in reality,
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because they cannot use the space allocated to cars. At the same time, cars have
more space in our model and are no longer slowed down by frictions with other
modes of transport, so that driving by car is more attractive and the modal share
of cars is roughly 15pp higher than in reality. This effect is even stronger in the
off-peak period, because congestion constrains the increase in car travel speed in the
peak period. As a result, traveling in off-peak periods is more attractive, and the
share of off-peak travelers is about 10 pp higher than in reality.

The second deviation from reality is more technical. Most policy variables in
our REFERENCE scenario are set to their real-world values, but parking fees and
bus size have to be chosen by the model. Taking real-world values would lead to
an ineflicient usage of parking space and bus capacity, and subsequently to a model
optimization failure, as the model is geared towards efficiency.

Despite these deviations, the REFERENCE scenario reflects most real-world policy
choices and results in a situation that would appear reasonable for completely sepa-
rated traffic. Consequently, this scenario can indeed serve as an adequate reference

point for evaluating the efficiency gains of the other scenarios.

Traditional The allocation of street space remains fixed, but policy makers can
now optimize over all other policy variables. In this scenario, as well as in all other
scenarios with flexible policy variables, bus tickets are always completely subsidized.
Free tickets and slightly higher frequencies than in the REFERENCE scenario in-
crease the attractiveness of buses, thus shifting people to this transport mode and
subsequently relieving car congestion. To increase the capacity of the entire bus
transportation system, the size of buses is increased.

The fixed street space allocation reduces the ability of policy makers to impact
on travel speed and modal shares. Therefore, a congestion toll of $0.72 per kilometer
is introduced to account for congestion externalities in peak hours. This reduces the
modal share of cars in peak periods, thereby increasing car speed. Moreover, the
congestion toll helps to harmonize the absolute number of cars between peak and
off-peak hours, resulting in a much better utilization of on-street parking space in
lower-demand periods.

To compensate for the congestion toll, the on-street parking fee is slightly re-
duced. Interestingly, the fee for on-street parking is at $1.06 per hour, while off-street
parking is free. At first glance, this might seem surprising, as the monetary costs
of constructing and maintaining one on-street parking space are much lower than
those of one off-street parking space in an underground parking garage. However,
the total costs of on-street parking spaces include not only the monetary costs, but
also the negative externalities on the travel times of all transport modes. These

externalities appear to be very costly, thus driving up the fees for on-street parking.
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Off-street parking is free, so that using the car is still attractive enough.
The use of public funds is significantly reduced in this scenario, mainly due to

congestion pricing and the reduction in the number of necessary parking spaces.

Space The traditional policy variables remain fixed, but policy makers can now
optimize over the allocation of street space. The result is a very strong re-allocation
of street space from cars and parking to bicycles, with a tenfold increase in space
for cyclists. This enhances cycling conditions, so that cycling speed more than
doubles in the peak period, and also increases substantially in the off-peak period.
Consequently, the modal share of cycling increases to 72.0% in peak hours, and
59.3% in off-peak hours.

On the other hand, the space for cars is substantially reduced. This reduction
would increase congestion and slow cars down, but the above-outlined shift to bikes
counteracts this effect and increases speed again. In this case, the former effect
is weaker than the latter, so that car speed increases modestly in contrast to the
REFERENCE scenario. The re-allocation of street space from cars to bicycles thus
helps to relieve car congestion. As policymakers have no instrument to differentiate
between periods, however, street space for cars cannot be used efficiently in both the
peak and the off-peak period, which is underlined by the speed difference between
the two periods.

Space for on-street parking is also reduced, which is reflected in the highest on-
street parking fee ($1.53 per hour). This fee accounts for the negative externality
that an additional on-street parking space has on car travel speed, an externality
that increases if the space for cars becomes scarcer. Additionally, off-street parking
is now priced at $0.73 per hour. This would not have been sensible in the previous
scenario, because bikes were already severely affected by congestion. An off-street
parking fee would then have exacerbated bike congestion by shifting car users to
these modes. In this scenario, however, bikes have more space, thus reducing their
congestion problems and enabling charging off-street parking fees.

The operation of the entire transport system now results in positive net revenues,
mainly due to higher parking fees and the reduction in the number of necessary

parking spaces. This clearly outweighs the reduction in congestion pricing revenue.

Traditional + Space Economic efficiency is maximized in this scenario. Now,
most traditional policy variables are set comparable to the TRADITIONAL scenario.
The largest efficiency gain compared to the previous SPACE scenario then comes
from the congestion toll, which harmonizes car traffic between peak and off-peak
hours. As a result, street space for cars is now used efficiently and congestion is

significantly reduced in both periods.
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Regarding the street space allocation, the space for buses is set to 2.2 % of street
space. This allocation leads to an increase in bus space compared to the REFERENCE
scenario (+0.9pp). In general, the rather small percentage of street space that is
allocated to buses underlines the space-efficiency of this transport mode.

Bikes are allocated 45.0 % of street space, reflecting a substantial increase from
the REFERENCE scenario (+40.1pp). Allocating that much street space to cycling
reduces congestion for cyclists and ensures fast cycling, thereby increasing the at-
tractiveness of cycling and inducing modal shifts.

The space for cars is reduced to 52.9 %, a substantial reduction from the REF-
ERENCE scenario (—40.9pp). The remaining space for cars is divided approximately
half-half between driving (27.7%) and on-street parking (25.2%). Although on-
street parking spaces have a negative externality on driving speed, they are still
provided as they have much lower construction and maintenance costs compared to
off-street parking. The negative speed externality is then reflected in the on-street
parking fee, which is again higher than the off-street parking fee.

Again, the operation of the entire transport system results in positive net rev-
enues. The costs of the bus system are more than covered by the positive net

revenues from the parking and toll system.

Transport-mode-specific impact of allocated space on economic efficiency
After looking at the main scenarios, we now extend our discussion on the underlying
economic channels by illustrating how the share of street space that is allocated to
a specific transport mode impacts on social welfare.

The upper part of Figure 3a shows the maximum obtainable social welfare, de-
pendent on the share of street space allocated to bikes. The lower part then depicts
the corresponding street space allocation.? If the street space for bikes is scarce, the
marginal benefit of re-allocating space to bikes is rather high, because it can greatly
help to make cycling more attractive, thereby inducing modal shifts and also miti-
gating congestion for cars. If street space for bikes is between 30 % and 65 %, social
welfare is less than 1% below the optimum in Scenario 4. Allocating even more
street space to bikes reduces social welfare, but at a slower pace than the previous
gains. Hence, it appears that too little space for bikes is worse than too much.

Scenario 4 has shown that it is efficient to only allocate 2.2 % of street space to
buses. This is also emphasized in Figure 3b, where social welfare clearly decreases

with more space that is allocated to buses. As buses only need relatively little space

9To generate these Figures, we maximize social welfare over the choice of traditional policy
variables and the street space allocation (similar to Scenario 4), but we gradually constrain the
share of street space allocated to a given mode of transport. For Figure 3a, for example, we begin
by allocating 5 % of street space to bicycles, and proceed in steps of 5 pp until 95 % of street space
is allocated to bicycles.
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Figure 3: Transport-mode-specific impact of allocated space on economic efficiency
(Berlin)

to generate decent passenger throughput, re-allocating more than 2.2 % of street
space to buses only worsens the conditions for cars and bikes without improving
those for buses. As a consequence, social welfare would decrease.

Figure 3c then shows that social welfare is dependent on street space allocated to
cars. If street space for cars is very scarce, it is entirely used for driving, and all cars
must be parked off-street. At 15 %, the parking lane is still only 1% of total street
space, because the negative externality on car speed would be relatively strong and
outweigh the higher costs of off-street parking spaces. From then onwards, however,
this externality decreases, and the parking lane increases stronger than the driving
lane. Thereby, more cars can park on-street, and expensive off-street parking spaces
can be reduced. In the optimum, the driving lane is 27.7 %, and the parking lane is
25.2 % of overall street space. Both lanes only equalize when about 60 % of the total
street space is allocated to cars, and allocating even more street space to cars further

decreases social welfare, with reductions becoming progressively stronger from 75 %.

3.5.2 The efficient street space allocation in Berlin

To sum up the most efficient scenario, the space for cars is reduced significantly and a
congestion toll makes using the car more expensive. Nonetheless, car drivers benefit
from much faster speeds. Bus passengers benefit from free tickets and faster travel
times due to higher frequencies and less congestion. The space for bikes is increased
significantly, so that cyclists benefit from cycling speeds that are close to free-flow
speeds. Moreover, the transportation system now even generates revenue, mainly

due to the reduction in parking space capacity (especially off-street), consistent
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pricing of all parking spaces, and the introduction of a peak congestion toll.

Comparing the resulting street space allocation with the current allocation is
not straightforward, because we model only separated traffic, whereas mixed traffic
is still prevalent on many streets. In reality, bikes can therefore use more street
space than the 4.9 % they are currently exclusively allocated, and the real increase
in street space for cyclists is consequently less extreme than suggested by the model
results. Nevertheless, the street space re-allocation from cars to bikes should still
be substantial, as indicated by the almost tenfold increase in bike space and the
approximate halving of car space.'® The scope of such an ambitious re-allocation
would approximately correspond to Barcelona’s superblock project that re-allocates
roughly 70 % of car space to pedestrians and cyclists (Rueda, 2019), and is expected
to improve health by reducing air pollution, noise, and heat (Mueller et al., 2020).

Previous papers have not analyzed how much street space should be allocated
to bikes, so we cannot directly relate our results to the literature. Even so, Zheng
and Geroliminis (2013) as well as Borjesson et al. (2017) analyze the street space
allocation for cars (without parking spaces) and buses. Both find that buses should
be allocated around 10 % of the street space for these two transport modes. In our
analysis, buses are allocated roughly 7 % of the street space for cars (without parking
spaces) and buses. It should be noted, however, that Zheng and Geroliminis (2013)
use a different objective function and minimize passenger-hours traveled, whereas
Borjesson et al. (2017) and we ourselves maximize over social welfare.

The average daily modal share for bikes is 60.1 % in the efficient scenario. This
value refers, however, to the adjusted modal share of the three transport modes of
car, bus, and bike. They account for only 50.6 % of overall traffic, so that the ac-
tual modal share of bikes would be reduced to 30.4 %. This is a significant increase
from the actually observed 17.6 % (Gerike et al., 2019) and would place Berlin be-
tween Copenhagen (29 %) and Amsterdam (36 %), arguably the two most renowned
cycling cities. In both of these cities, the expansion and improvement of bicycle
infrastructure, often separated from other modes, is regarded as the basis for the
success of cycling (Koglin et al., 2021).

The parking prices in our model are, at first glance, relatively low, with $1.16 per
hour for on-street parking and $0.45 for off-street parking. These prices are, however,
based on the assumption that there is no longer any discounted parking for residents,

and that each parking space is priced consistently. This is in stark contrast to Berlin

10Tt should be noted that we generally consider street space to be the same as capacity, and indeed,
re-allocating street space is the most obvious way to re-allocate capacity. We could, however, also
re-allocate capacity by changing how selected modes of transport are prioritized by traffic lights
(e.g. Qadri et al., 2020). The herein presented changes in the street space allocation might therefore
be less pronounced if part of the capacity re-allocation were achieved through changes in traffic light
systems.
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in 2020, where residents only had to pay $11.65 per year to use residential parking,
which amounts to a meagre $0.03 per day. In our model, the daily cost for on-street
parking would increase to $27.84, and $10.80 for off-street parking. The high price
for on-street parking is driven by the scarcity of street space, as well as the negative
externality on travel speeds. Off-street parking spaces are relatively cheaper and
cost less than the willingness to pay for a daily residential parking permit, which
van Ommeren et al. (2011) estimate to be $15.75 in Amsterdam. A permanent
parking space in an underground garage in Berlin would then cost roughly $320 per
month. This is more expensive than the prices found in reality, but it should be kept
in mind that the real prices for parking spaces in Berlin are distorted downwards by
the supply of cheap residential parking permits.

The peak car toll of $0.67 per kilometer would, on average, result in about $3.95
per trip. Thus, it is close to the real-world values for Stockholm (between $3.28 and
$4.91 per one-hour trip during peak, and maximum $14.71 per day), but slightly
below the real-world values for London ($19.52 per day).!!

The bus service is fully subsidized, so that riding the bus is free. Basso and
Silva (2014) also find an optimal subsidy of 100 % for London, and Parry and Small
(2009) find that large subsidies are warranted from a welfare-perspective. On the
other hand, Borjesson et al. (2017) find that the optimal subsidy for Stockholm lies
around 30-40 %.

In conclusion, we find that the policy variables and traffic outcomes in the ef-
ficient scenario generally take on quite realistic values. The re-allocation of street
space from cars to bikes would surely be substantial, but still comparable in scale

to Barcelona’s superblock project.

3.6 Main results for New York City
3.6.1 Analysis of the underlying economic channels of impact

The detailed results for New York City are presented in Table 2. In general, the
underlying channels through which street space re-allocations impact on social wel-
fare are similar to those in Berlin, so we continue by focusing only on the main
similarities and differences between the cities.

Similar to Berlin, we find that even if the street space allocation is fixed, economic
efficiency can still be improved by providing free bus transport at higher frequencies,
and introducing a congestion toll while slightly lowering on-street parking prices.
These policies shift people from cars to buses, thereby reducing car congestion and

travel times.

" \Monetary values for Stockholm and London were taken from the official web pages of the
congestion pricing system, and subsequently converted to 2020 US dollars.
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Table 2: Main results (New York City)

Scenario REFERENCE ~ TRADITIONAL SPACE TRADITIONAL + SPACE
Social welfare 0.000 19111.225 9428.178 28715.077
Consumer surplus 0.000 3423.127 19919.588 7732.785
People 14800 14800 14800 14800
Travelers 14572.187 14581.722 14607.195 14590.688
Share of space for bicycles 0.012 0.012 0.042 0.046
Share of space for buses 0.017 0.017 0.015 0.048
Share of space for cars 0.694 0.694 0.832 0.673
Share of space for parking 0.277 0.277 0.112 0.233
Bus fare (peak) 0.508 0.000 0.508 0.000
Bus fare (off-peak) 0.508 0.000 0.508 0.000
Car toll (peak) 0.000 0.686 0.000 0.949
Car toll (off-peak) 0.000 0.000 0.000 0.000
Parking fee (on-street) 3.148 2.958 4.154 3.013
Parking fee (off-street) 0.000 0.000 0.000 0.010
Bus frequency (peak) 12.000 23.148 12.000 48.862
Bus frequency (off-peak) 8.000 19.986 8.000 41.356
Bus size 49.768 46.480 42.226 26.392
Number of bus stops 3.900 2.950 3.900 2.868
Share of peak travelers 0.650 0.630 0.689 0.635
Share of off-peak travelers 0.335 0.356 0.298 0.350
Share of non-travelers 0.015 0.015 0.013 0.014
Modal share of car (peak) 0.831 0.717 0.822 0.625
Modal share of bus (peak) 0.131 0.243 0.105 0.289
Modal share of bicycle (peak) 0.039 0.039 0.073 0.086
Modal share of car (off-peak) 0.888 0.819 0.889 0.797
Modal share of bus (off-peak) 0.073 0.145 0.070 0.165
Modal share of bike (off-peak) 0.039 0.036 0.041 0.038
Speed of cars (peak) 19.769 30.017 27.231 35.849
Speed of buses (peak) 23.622 23.073 24.200 27.581
Speed of bicyles (peak) 12.917 13.098 19.370 19.320
Speed of cars (off-peak) 42.300 43.317 53.229 43.844
Speed of buses (off-peak) 26.296 27.396 26.697 30.837
Speed of bicycles (off-peak) 18.846 19.025 19.998 19.998
Used parking spaces (on-street, maximum) 1.000 1.000 1.000 1.000
Used parking spaces (on-street, minimum) 0.573 0.701 0.460 0.782
Share of on-street parking (peak, all travelers) 0.051 0.062 0.019 0.060
Share of on-street parking (off-peak, all travelers) 0.049 0.059 0.018 0.057
Net revenue of operating transport systems -31968.737 -18326.913 -41091.702 -13723.267
Parking system: revenue 9196.959 9275.070 4571.517 8691.240
Parking system: costs 43200.863 35789.135 47321.820 31478.263
Toll system: net revenue 0.000 10311.055 0.000 12520.165
Bus system: revenue 3100.865 0.000 2656.675 0.000
Bus system: costs 1065.699 2123.903 998.074 3456.408

The street space shares are adjusted for car, bus, bike, and parking. Space for pedestrians is excluded, but takes up 23.7 %
of total street space in reality.

The modal shares are adjusted for the three overground transport modes car, bus, and bike. Overground transport makes
up 43.6 % of overall traffic.

In contrast to Berlin, however, optimizing over the street space allocation in
New York City leads to lower efficiency gains than optimizing over traditional policy
variables. The main reason for this difference is the general preference for the three
modes of transportation, which are reflected in the alternative-specific constants.
The city-specific calibration of the theoretical model results in alternative-specific

constants that are slightly higher for bikes than for cars in Berlin, whereas they are
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much lower for bikes than for cars in New York City.!? This implies that there is
a strong preference for cars in New York City, so that shifting people away from
cars can quickly become welfare-reducing. This is also illustrated in Figures 4a and
4b, where welfare basically decreases if more than 5% of street space is allocated
to either buses or bikes. Figure 4c then also underlines that those two modes are

roughly equally attractive, independent of the space for cars.
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Figure 4: Transport-mode-specific impact of allocated space on economic efficiency
(New York City)

The general preference for cars in New York City also results in an efficient
street space allocation that is not too different from the real situation. The space
for driving cars is reduced only slightly to 67.3 % (—2.1 pp), and the space for parking
is reduced to 23.3% (-4.4pp). The space for buses increases to 4.8 % (+3.1 pp), and
for bikes to 4.6 % (+3.4pp). At first glance, these changes might seem small, but the
space for buses is nearly tripled, and for bikes even more than tripled. However, as
individuals in New York City are less willing to switch to buses or bikes, it would not
be sensible to reduce the space for cars too much. This ensures that individuals who
do not want to switch to buses or bikes are not affected too negatively by longer car
travel times, thereby providing a rationale for the mitigated effectiveness of street

space re-allocations in New York City.

3.6.2 The efficient street space allocation in New York City

The extent of the proposed street space re-allocations is significantly less pronounced

than in Berlin, because the current situation is already rather close to the optimum

12Tn Section 4.3, we further discuss the role of the alternative-specific constants in our model.
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for New York City. As a consequence, the proposed re-allocations are feasible, but
they are also less effective in improving efficiency.

In Scenario 4, the adjusted modal share of cycling increases to 6.9 % (+2.6 pp),
compared to reality. Given the general preference for cars, this modest increase ap-
pears reasonable in our model context. The underlying assumption that the general
transport preferences are constant is, however, further discussed in Section 4.3.

Most of the other model results are also reasonable and in line with findings
from Berlin. Again, the space for buses is roughly 7% of that for driving cars and
buses, and bus tickets in New York City are free as well. The peak congestion toll
for an average trip amounts to $4.95, and is thus higher than the congestion toll
that was simulated for Berlin. This substantially increases the costs for cars, which
in turn can explain the very low monthly price for parking in an off-street parking
garage, now at only about $7.30. Expensive congestion charges and high parking
fees would shift more car drivers to modes of transport they do not like, thereby
reducing their utility from traveling. Hence, off-street parking serves as a cheap
parking alternative, whereas on-street parking is more expensive due to its negative

speed externality.

3.7 Sensitivity analysis
3.7.1 Additional scenarios

To test whether the economically efficient street space allocations in Berlin and
New York City are similar if we impose political constraints or change modeling
assumptions, we conduct additional sensitivity analyses. Below, we focus on the
motivation, description, and main findings of these scenarios, while the mathematical
implementations of Scenarios 6 and 8 are outlined in Appendix B.1, and detailed

results for the scenarios are presented in Tables 4 and 5 in Appendix B.2.

5. PoOLITICAL CONSTRAINTS: First, we test the robustness of Scenario 4 to

changes in the set of available policy measures.

(a) No Congestion Toll: The introduction of congestion pricing is often met
with widespread opposition among a majority of voters, and could af-
fect low-income individuals differently than high-income individuals (De
Borger and Proost, 2012). Therefore, politicians might shy away from
implementing congestion pricing.

(b) No Subsidies: As outlined by Basso and Silva (2014), there are several
arguments both for and against subsidizing public transit. Against this
backdrop, we analyze a scenario in which the transportation system under

consideration has to be completely self-financed.
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6. MIXED TRAFFIC: As argued by Anderson and Geroliminis (2020), dedicated
bus lanes might underutilize street space, especially if bus frequency is rather
low. Against this backdrop, we analyze whether allowing for mixed traffic of

cars and buses on a shared lane can increase welfare.

7. CApPACITY REDUCTION: Recently, there is intensified discussion on turning
“streets for traffic” into “streets for people”. Thus, we model a scenario where
(arbitrarily) 20 % of street space is now used for other purposes, e.g. public
seating or community gathering places. As the economic effects of such con-
versions are unclear, we aim for a lower-bound estimate by assuming that the
20 % of re-purposed street space has no impact on social welfare. This scenario

thus basically corresponds to a reduction in street space capacity of 20 %.

8. BIKE PARKING: Until now, parking space for bikes has not been explicitly
incorporated into our model. Instead, it was implicitly assumed that there is
always enough off-street space where bikes can be parked, e.g. along the edges
of sidewalks, in courtyards, private sheds, or in bicycle cellars. As a sensitivity
analysis, we run Scenarios 1 and 4 again, but now consider that all individuals
of Group 1 need to park their bike on-street.! The two new scenarios are then

denoted as:

(a) Reference (With Bike Parking)
(b) Traditional + Space (With Bike Parking)

These two scenarios allow us to verify whether the efficiency gains between
the original Scenarios 1 and 4 are robust to the inclusion of bike parking. The
results also demonstrate how street space should be allocated if policymakers

aim to provide enough adequate bike parking facilities on-street.

3.7.2 Results

Political constraints (Sensitivity) If policy makers cannot set a congestion toll,
they increase parking fees to maintain an adequate modal share of cars. However,
they lose the ability to specifically price car traffic in peak periods, leading to higher
congestion levels in these periods, but only a minor reduction in efficiency, compared
to Scenario 4.

A self-financed transportation system is already achieved in the welfare-maxi-
mizing Scenario 4 in Berlin, because the net revenues from toll and parking exceed

the costs of the bus system. In New York City, however, operational net revenue is

13 Assuming that all individuals of Group 1 (83 % in Berlin, 83.6 % in New York City) have to park
their bike on-street, is arguably a rather extreme case. In reality, this share is likely to be lower,
because many individuals can park their bike in courtyards, private sheds, or in bicycle cellars.
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negative, mostly due to the costs of providing a lot of expensive off-street parking.
Hence, policy makers increase the congestion toll and parking fees, and slightly
reduce the space for cars. This reduces the modal share of cars and the necessary
number of expensive off-street parking spaces. The efficiency remains very close
to the optimum in Scenario 4. It should be noted, however, that self-financing is
achieved at the expense of consumer surplus.

Both analyzed constraints only have a small effect on street space allocation,
which is still very similar to that of Scenario 4. Thus, the efficient street space
allocation appears to be rather robust to changes in the availability of policy instru-

ments.

Mixed Traffic (Sensitivity) Mixed traffic of cars and buses leads to a small
reduction in efficiency compared to Scenario 4, which is mainly due to the slightly
reduced speed of buses. To accommodate cars and buses on the same lane, the
parking lane is slightly reduced, so that the new shared lane is even larger than the
sum of car and bus lanes in Scenario 4. This additional space helps to mitigate

speed reductions from frictions between cars and buses on the same lane.

Capacity Reduction (Sensitivity) Reducing street space by 20 % still increases
efficiency compared to the REFERENCE scenario, and it is only slightly lower than
in Scenario 4. This is achieved by mainly reducing the space for parking, but also
for driving cars. The reduction in on-street parking spaces is accompanied by a
strong increase in on-street parking fees. In New York City, off-street parking fees
are additionally increased, and the congestion toll is lowered at the same time. The
outlined price changes generally shift people to buses and bikes, ensuring that car
travel speed does not decrease excessively.

If the 20 % of former street space are used relatively efficiently for alternative
purposes, it is easy to imagine that social welfare might become even higher than
in Scenario 4. Examples of such alternative purposes include the provision of com-
munity gathering places, public seating, or planting trees and flowers to provide for

additional shade and enhance the cityscape (Mehta and Bosson, 2021).

Bike Parking (Sensitivity) If we introduce on-street bike parking in our model,
we find that re-allocating street space can still lead to significant efficiency gains. In
Berlin, the inclusion of bike parking mainly reduces the space for bikes by ca. 15 pp
compared to Scenario 4, and increases the parking space accordingly. Nearly all of
the on-street parking space is now used by bikes, and cars are shifted to parking off-
street by adjusting parking fees. Again, off-street parking spaces are more expensive

to build and maintain, thus significantly increasing operational costs. This, however,
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appears to be better than losing cyclists to cars due to insufficient bike parking
spaces.

In New York City, the introduction of bike parking has different effects. Bike
parking generally creates a negative external effect on travel speeds, because each
bike consumes on-street parking space. To internalize this effect, cycling must be-
come relatively less attractive, and in New York City this is achieved by increasing
the space for cars by 6.3 pp compared to Scenario 4. In Berlin, the pressure on
making cycling relatively more expensive was mitigated by the generally high at-

tractiveness of cycling.

4 Discussion and Conclusion

4.1 Impact on congestion

Despite our focus on economic efficiency, we can also draw interesting conclusions
about the impact on congestion. Comparing the REFERENCE scenarios — where cars
were significantly slowed down by congestion during peak hours in both cities — to
the respective SPACE scenarios enables us to analyze the isolated impact of street
space re-allocations on congestion. Although street space is re-allocated from cars
and parking to buses and bicycles, the speed of cars does not decrease. Instead, it
increases slightly in Berlin and even a little more in New York City. This underlines
that taking space away from the car need not lead to a worsening of congestion
problems, but it can even help to alleviate congestion problems. While this might
be counterintuitive at first glance, there is a simple explanation: the re-allocation
improves the conditions for the travel alternatives, making them more attractive
and thus inducing significant modal shifts. These modal shifts reduce the number
of cars, and the remaining car drivers can benefit from less congested streets.
When it comes to tackling congestion, there is, however, one limitation of street
space re-allocations. Usually, the implemented allocation is static throughout the
day.' More capacity and better utilization in peak hours might therefore lead to idle
capacity in off-peak hours, which is underlined by the very different congestion levels
in our scenarios without a congestion toll. Our analyses then confirm that time-
dependent congestion tolls are an effective policy instrument to tackle congestion in
peak hours, without generating idle capacity in off-peak hours. Hence, re-allocations

can be supported well by congestion tolls.

MTechnically, a dynamic street space allocation could be realized, for example, through lane
control signs indicating that selected lanes are only open for buses or bicycles, or through automatic
rising bollards that physically block out cars and buses from selected lanes. Such tools are relatively
easy to implement and rather cheap (Valenga et al., 2021), but currently barely used.

32



4.2 Further implications of efficient street space allocation

In our model, we mainly focus on time and monetary costs. There are, however,
additional implications associated with the re-allocation of street space and the
subsequent modal shifts.

Importantly, the proposed shift from cars to bikes should entail benefits that
are not captured by our model, such as positive effects on health, injury risks, and
the environment. First, the physical activity that comes with cycling can lead to
lower levels of obesity or reduce the risk of cardiovascular disease (Garrard et al.,
2021). Second, a cyclist’s risk of injury decreases when trips are longer and more
frequent, and each cyclists also benefits from a general increase in bicycle ridership,
which reduces the risk of injury as well. These two effects are labeled safety in
kilometers and safety in numbers, respectively. Moreover, separating bike lanes
from motorized traffic increases traffic safety (Elvik, 2021). The shift from cars to
bikes also leads to reductions in air and noise pollution, and can thereby contribute
to a more sustainable transport system (Garrard et al., 2021).

When re-allocating street space to cyclists, it is important to pay attention to the
design of the new bike lanes, because well-designed and safe infrastructure can help
to promote cycling for women, children, and elderly people, thereby improving the
equity of the overall transportation system (Buehler and Pucher, 2021b). Also, the
inclusiveness of the transportation system is significantly improved by the provision
of free public transport at higher frequencies.

Moreover, discouraging the use of cars and supporting cycling can increase social
interaction, thereby generating positive effects on livability and amenities within
cities (Garrard et al., 2021).

4.3 Model limitations

In our model, the alternative-specific constants 6, capture hard-to-measure fac-
tors such as perceived safety, comfort, or general preferences for selected modes of
transport. Their values are calibrated so that real-world policy values would lead to
real-world modal shares. As their name suggests, we assume that alternative-specific
constants are really constant. In reality, however, their values might change due to
street-space re-allocations. More space and a higher modal share of cycling could,
for example, enhance perceived safety and comfort, thus increasing the value of the
alternative-specific constant for bikes. Due to missing information on the actual
determinants of alternative-specific constants, however, we refrain from modeling
such changes. As more space for one transport mode would most likely increase
its alternative-specific constant, the inclusion of such relationships might amplify

the simulated re-allocations and modal shifts. This might be especially relevant for
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New York City, where transport preferences are currently more car-centric. Hence,
economic efficiency in New York City might be further improved by re-allocating
even more street space to buses and bikes than suggested by our model simulation.

Street space re-allocations would not only impact on the transport system, but
also on other sectors of the city’s economy. One area that might be affected are
housing prices. On the one hand, housing prices might increase with less traffic and
a higher livability, due to the re-allocation of street space from cars to bikes. On the
other hand, potential decreases in accessibility and higher costs due to congestion
pricing and worse parking conditions might reduce housing prices. This ambiguity is
also underlined by Polloni (2019), who finds no clear direction of effects, but strong
effect heterogeneity between different traffic-calming projects.

Another area that might be affected is the impact on local businesses. A re-
cent review on the effects of comparable street experiments finds that there are no
negative effects on local businesses, and some businesses even report positive ef-
fects (Bertolini, 2020). Moreover, we do not explicitly include delivery traffic in our
model. The volume of this type of traffic is often fixed, because stores have to be
supplied and packages delivered at relatively fixed intervals and times to maintain
operations. Hence, explicitly including delivery traffic in our model would probably
correspond to a reduction of street capacity, which is in fact analyzed in Scenario 7.

Moreover, we only account for private time and monetary costs, but not for
the external effects of street space re-allocations and subsequent modal shifts. As
outlined in Gossling et al. (2019), the external costs of driving by car are around
$0.13 per kilometer, whereas cycling creates external benefits of around $0.21 per
kilometer. This suggests that accounting for external effects would be likely to
increase the changes proposed by the model, and thus poses as an interesting area

for future research.

4.4 Conclusion

We find that street space re-allocations are an effective policy instrument for in-
creasing the efficiency of the transportation system. If policy makers can optimize
over the street space allocation, the efficiency of the transportation system can be
significantly improved. These gains are mainly achieved by reducing the space for
cars and parking, and increasing the space for buses and especially for bikes.

In Berlin, the extent of proposed street space re-allocations is greater than in
New York City, because cycling is considered a more established mode of transport,
and people are generally more inclined to switch to cycling. Hence, re-allocations
in Berlin are more effective in inducing modal shifts, and the attainable efficiency
gains are much higher than in New York City. This underlines that city-specific

characteristics and people’s transport preferences should be taken into account when
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re-allocating street space.

Our findings hence contribute an economic perspective to the ongoing debate
on the allocation of street space, which historically, is heavily skewed towards cars
and parking. There are increasing demands to re-allocate street space to buses and
especially to bicycles in order to improve the sustainability and fairness of space in
the transportation sector. We demonstrate that sustainability and fairness are not
the only incentives for such re-allocations, and that maximizing economic efficiency

is just as good a reason.
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Appendix

A Model Calibration

The calibration of our model consists of three main steps, which are explained in
detail below. First, we set model parameters based on city-specific travel surveys and
the relevant literature (Section A.1). Second, we calibrate the remaining parameters
so that our model closely matches real-world choice behavior (Section A.2). Third,
we validate our calibration by computing travel elasticities and cross-elasticities from

our calibrated model and comparing them with the related literature (Section A.3).

A.1 Parameter values from travel surveys and the related literature

In the first step, we set many parameters according to values calculated from city-
specific travel surveys or found in the literature. All monetary values of our analysis
are presented in 2020 US dollars. If sources report monetary values in different
currencies or base years, those values are converted to 2020 US dollars. An overview
of the main parameter values for Berlin and New York City can be found in Table
3.

A.1.1 General parameters

Similar to Basso and Silva (2014), we choose a setting with a capacity of 3,600
vehicles per hour for our representative kilometer of street space. This capacity
was already reduced by a factor of 0.6 in order to account for traffic lights. The
corresponding width of our representative kilometer of street space is 10.5 meters.

We then set the number of individuals in such a way that congestion is generated.
More specifically, we set total travel demand Y so that using the actually observed
values for our policy variables in our model leads to the actually observed car speed
during peak hours.

In our model, we differentiate between people who have access to private parking
space, and those who have to use public on-street or off-street parkings spaces. In
Berlin, 33.3% of inhabitants own a car, and 50.9% of car owners have a private
parking space (Gerike et al., 2019). Thus, we assume that 0.509 - 0.333 ~ 17 % of
our considered individuals own a private parking space and belong to Group 2; the
remaining 83 % do not own a private parking space and belong to Group 1. For
New York City, we use data from the 2019 Citywide Mobility Survey and find that
83.6 % belong to Group 1, and 16.4 % to Group 2 (NYC DOT, 2019).

In Berlin, the average trip length is 5.9km and the average walking speed
3.9km/h (Gerike et al., 2019). In line with Basso and Silva (2014), we define 6
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Table 3: Main parameter values

Parameter Variable Berlin  New York City
Road capacity [veh/hr] C 3,600 3,600
Street width [m)] w 10.5 10.5
Total travel demand [pax/day] Y 12,500 14,800

Share Group 1 (public parking) Y)Y 0.83 0.836

Share Group 2 (private parking) Y2y 0.17 0.164
Average trip length [km] l 5.9 5.22
Considered hours per day 20 20
Peak duration [hr] HPeak 6 11
Off-Peak duration [hr] [ Off-Peak 14 9
Car occupancy [pax/veh] a 1.3 1.51
Car operating costs [$/km] Cear 0.46 0.46
Bike operating costs [$/km] Chike 0.06 0.06
Parking space area for cars [m?] Sreq 16 16
Parking space area for bike [m?] Sreq/10 1.6 1.6
Cost per on-street car parking space [$/day] Cparkon 3.43 3.43
Cost per off-street car parking space [$/day] Cparkoff 14.88 14.88
Cost per on-street bicycle parking space [$/day] Cparkbike 0.08 0.08
Parking garages [garages/km)] Sparkoff 2 2
Average parking duration [hr] d, 6.33 7.09
Bus stops [stops/km] Shusstop 3.8 3.8
Value of peak car travel time [$/h] 8.03 17.80
Value of peak bus travel time [$/h] 5.85 17.80
Value of peak bike travel time [$/h] 20.01 32.40
Value of off-peak car travel time [$/h] 7.05 15.61
Value of off-peak bus travel time [$/h] 5.14 15.61
Value of off-peak bike travel time [$/h] 17.55 28.42
Weight of waiting time 01 2.00 2.00
Weight of walking time b2 2.50 2.50
Free flow speed, car and bus [km/h] 1/ty 60 60
Free flow speed, bike [km/h] 1/ts 20 20
Parameters for car and bus BPR functions a; 8 2.0; 4.0 2.0; 4.0
Parameters for bike BPR functions a; B 0.5; 5.0 0.5; 5.0
Time for boarding the bus [seconds/pax] tsh 2.5 2.5
Equivalence factor bus (at by,s(k = 75)) Dpus 2.0 2.0
Equivalence factor bike Dpike 0.25 0.25
Walking speed [km/h] Vi 3.9 4.77
Marginal costs of public funds mepf 1.15 1.15
Operational costs of congestion pricing [share of revenue] oy 0.35 0.35
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peak hours and 14 off-peak hours. Based on Gerike et al. (2019), peak hours are
from 7:00 to 8:59 and from 14:00 to 17:59. During this time, hourly traffic volume
is at least 6.9 % of daily traffic volume. Hourly off-peak traffic volume is never more
than 6.5 % of daily traffic volume. The time from 0:00 to 3:59 only features 0.1 %
of daily traffic volume, and is subsequently excluded. Hence, the aggregated traffic
volume during the 6 peak hours is 50.2 % of daily traffic volume, and the 14 off-peak
hours contain 49.6 % of daily traffic volume.

In New York City, the average trip length is 5.22km and walking speed is
4.77km/h (NYC DOT, 2019). Traffic levels are generally high, so that morning
and evening peak hours are not so clearly discernible. Based on data from NYC
DOT (2019), we then define 11 peak hours (7:00 to 9:59 and 11:00 to 18:59) and
9 off-peak hours (4:00 to 6:59, 10:00 to 10:59, and 19:00 to 23:59). The excluded
hours from 0:00 to 3:59 only feature 1.4 % of daily traffic volume, the aggregated
traffic volume during the 11 peak hours is 71.7 % of daily traffic volume, and the 9
off-peak hours observe 26.9 % of daily traffic volume.

For cars, the average occupancy is 1.3 passengers per vehicle in Berlin (Gerike
et al., 2019), and 1.51 in New York City (NYC DOT, 2019). Operating costs per
kilometer are $0.46 for each car, and $0.06 for bikes (Gossling et al., 2019). The
cost function for buses is from Basso and Silva (2014) and converted to 2020 US
dollars. Based on values by Litman and Doherty (2009), we assume that each
car requires 16 m?> when parking, and each bike parking space requires a tenth of
the parking space for a car, i.e. 1.6m?2. The costs for construction, operation, and
maintenance for parking spaces are $3.43 per day for an on-street parking space, and
$14.88 for an off-street parking space in an underground parking garage (Litman and
Doherty, 2009).!> Based on real-world observations, we assume that there are two
underground parking garages per street kilometer. The construction costs for one
bicycle parking space are $0.08 per day, assuming a lifespan of 20 years (Bushell
et al., 2013).

In reality, cars are in motion for roughly 1 hour, and parked for the rest of the day
(Gerike et al., 2019). For our model, this would imply an average parking duration
of 20 — 1 = 19 hours per car. However, our model assumes that each individual
makes only one trip per day, whereas in reality, people make several trips per day,
and use the same car for some of these trips. In order to account for the fact that
cars are used for more than one trip per day, we divide the average parking duration

by the daily number of trips per car, which is 3.0, based on an approximation with

15In our context, the costs for parking spaces are not influenced by land costs. For on-street
parking spaces, the required land is taken from the exogenously given street space, so that no
additional costs in acquiring the land would accrue. For simplification, we set land costs for the
given street space to zero. For off-street parking spaces in underground parking garages, no land
costs accrue (Litman and Doherty, 2009).
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data from Germany’s largest mobility survey “Mobilitét in Deutschland” (Nobis and
Kuhnimhof, 2018).16 Not doing so would inflate the number of parking cars, leading
to incorrect parking space requirements. Hence, the average parking duration d,, is
set to 19/3 = 6.33. In New York, the daily number of trips per car is 2.68, so that
the average parking duration d, is set to 19/2.68 = 7.09

For Germany, the values of time (VOT) are taken from Steck et al. (2018), and
for New York City from the U.S. Department of Transportation (2022). We use
information from Wardman et al. (2016) to differentiate between peak and off-peak

hours.

A.1.2 Transport time parameters

For cars, we assume that the free flow speed is 60 km/h, so that ¢, is 1/60. Similar
to Basso and Silva (2014), we set § = 4 and assume that a = 2, so that the free
flow speed is reduced to 1/3 at capacity.

For buses, the values for ¢y, o, and 8 are assumed to be the same as for cars.
The equivalence function is by,s = 0.0114 -k + 1.15, so that a bus with 75 passengers
would correspond to 2 cars (Basso and Silva, 2014).

For cyclists, we assume a free flow speed of 20km/h, so that ¢t; = 1/20. This
value is based on a study by Paulsen et al. (2019).!” Congestion effects for cyclists
arise mainly due to heterogeneous speed preferences of cyclists, which again can
be modeled with a BPR function. Paulsen et al. (2019) estimated such a BPR
function for cyclists, and in line with their findings, we set « = 0.5 and § = 5. As
bicycles have different space requirements than cars, we use the equivalence factor

bpike = 0.25 to convert cyclists to passenger car units (Agarwal et al., 2013).

A.1.3 Welfare function parameters

In line with Parry and Small (2009) and Basso and Silva (2014), we set the marginal
costs of public funds to 1.15. The operational costs of the congestion pricing system
are assumed to be the share 7,,; of the revenue from congestion pricing. In London,
the operational costs of the congestion pricing system were, on average, 35 % of the

revenue between 2012 and 2019. Accordingly, we set 1, = 0.35.

16We use the regional dataset Mobilitit in Deutschland B3, and only consider those journeys that
start and end in Berlin, thereby ensuring that the respective journeys are within Berlin.

170lder studies appear to report free-flow speeds that are, on average, slightly lower than 20 km /h.
Allen et al. (1998), for example, report that values lie between 12km/h and 20km/h. Given the
increasing usage of pedelecs, however, we think that it is appropriate to set the free-flow speed at
20km/h. An even higher value for the average speed (21.6km/h) is reported by Greibe and Buch
(2016) for Copenhagen, Denmark. To test the robustness of our model, we also run a simulation
with a free-flow speed of 15km/h and find that the main model insights remain valid; detailed
results are available upon request.
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A.1.4 Street space allocation

To derive the actual street space allocation in Berlin, we use the data reported in
Agentur fiir Clevere Stéadte (2014) and adjust the street space allocation to cars,
bicycles, and parking. We then use publicly available information on the length of
the road network and the length of bus lanes to calculate how much of the space
for cars is taken up by bus lanes. We find that 62.6 % of street space in Berlin is
allocated to cars, 31.2% to parking, 1.3 % to buses, and 4.9 % to bicycles.

For New York City, we proceed in a similar manner, with Transportation Alter-
natives (2021) as the main data source. Here, 69.4 % of street space is allocated to
cars, 27.7% to parking, 1.7 % to buses, and 1.2 % to bicycles.

A.2 Parameter calibration

In the second step, we calibrate the remaining parameters so that the choice be-
havior in our model reflects real-world choice behavior as closely as possible. This
calibration is conducted separately for Berlin and New York City. The remaining
parameters to be calibrated are the six period-specific modal constants (QZm), the
six period-specific marginal utilities of time (4., ), the marginal utility of money (),
three scale parameters (u), as well as the number of individuals considered (Y?).
We begin by calibrating these parameters for individuals of Group 1. To do this,
we recreate real-world conditions in our model by setting travel speeds, travel costs,
and policy variables similar to the values observed in Berlin and New York City.
The average travel speeds are calculated with data from “Mobilitat in Deutschland”
(Nobis and Kuhnimhof, 2018) and NYC DOT (2019). Information on travel costs
and policy variables are from Gerike et al. (2019), NYC DOT (2019) and other
publicly available sources. The calibration of the remaining parameters then ensures

that the following relationships are satisfied exactly under real-world conditions:

e The modal shares for peak and for off-peak hours are similar to those observed

in Berlin.
e The ratio between peak and off-peak travel is similar to that observed in Berlin.

e The VOTg, for a given transport m mode in period ¢ is equal to the ratio of
the respective marginal utility of travel time S, and the marginal utility of

income .

e The total travel elasticity with respect to bus peak fare is set to —0.002, similar
to Parry and Small (2009) and Basso and Silva (2014).

e The car peak elasticity with respect to the peak travel time is set to —0.41,
similar to Basso and Silva (2014) and in line with Litman (2022).
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e Logsum parameters conform to 1 > py, > pn > 7 > 0in order to be consistent

with utility maximization (Koppelman and Bhat, 2006).

e The number of individuals considered is set so that Equation 11 results in the

observed travel speed for cars.'®

For individuals of Group 2, we use the calibrated parameters from Group 1, but
change the car modal constants for peak and off-peak hours in such a way that

real-world conditions lead to the observed modal shares.!?

A.3 Checking the validity of the calibration

In the third step, we check the validity of our calibration by computing various
elasticities and cross-elasticities from our calibrated models for Berlin and New York

City, and comparing them to the related literature.

e The car peak elasticity with respect to the bus peak fare (0.034 in Berlin;
0.079 in New York City) lies between the values for a single ticket (0.116) and
a travel pass (0.02) that were estimated by Hensher (1998) and reported in
the review by Litman (2022).

e The car peak elasticity with respect to the off-street parking fee (—0.215;
—0.171) and the on-street parking fee (—0.343; —0.263) are in accordance with
the typical values reported in a meta-analysis by Lehner and Peer (2019). Both
elasticities also lie within the confidence interval of their estimated baseline

elasticity of parking volumes with respect to price changes.

e The cross-price elasticity of off-street parking with respect to on-street parking
fees is 0.77 in both cities, which is the same as estimated by Gragera and
Albalate (2016).

e The bus elasticity with respect to the bus fare is —0.45 in both cities, which is
in line with results reported in Dunkerley et al. (2018), Borjesson et al. (2017)
and also in the review by Litman (2022).

e The bus peak elasticity with respect to the bus off-peak fare is 0.029 in Berlin
and 0.027 in New York City, implying a rather low inter-temporal substitution.

Borjesson et al. (2017) use a value of 0.1, but our elasticity is similar to findings

18 Apart from the share of car space that is used in Equation 11, the real-world street space
allocation does not impact on the calibration.

¥0f course, individuals from Groups 1 and 2 might differ with respect to modal shares, elasticities,
and other characteristics. Unfortunately, the available data on mobility behavior in Berlin and New
York City, as well as the literature-based elasticities are usually not reported separately for these
two groups, but as aggregated values over all travelers. We therefore have to calibrate the model
in such a way that modal shares and elasticities are the same for both groups.
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in Guzman et al. (2018), who show that elasticity values below 0.03 can also

be realistic.

e The bike peak elasticity with respect to car (0.13) and bus (0.03) peak costs as
well as with respect to car (0.13) and bus (0.06) peak travel times are close to
the ones (0.15; 0.02; 0.18; 0.08) reported in Holmgren and Ivehammar (2020).

This comparison shows that the elasticities and cross-elasticities from our cali-
brated model are indeed in line with empirically estimated values from the related
literature. Therefore, we can conclude that the choice behavior in our calibrated
model reflects real-world choice behavior very well, thus enhancing the validity of

our model results.
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B Sensitivity analyses

B.1 Model implementation
B.1.1 Mixed traffic for cars and buses

In this scenario, we get rid of dedicated bus lanes and allow buses to use the street
space for cars. We follow Basso and Silva (2014) for modeling the speed of cars
and buses in these mixed traffic conditions. For buses, the speed function is rather
similar to that of separated traffic (Equation 12), with the only notable difference
being in the term of the BPR function. Now, the street space capacity is not only

used by buses, but also by cars.

l‘Ycar q'busk A
tq,bw:w(m.( vaor )+ ] m))

carlane - C

(26)

Yoo
+ Sbusstop (f?; 12 : tsb + td) .
The same change in the BPR function also applies to cars. Moreover, cars are now
slowed down by bus stop operations, but it is assumed that they only experience a
fraction of the delay for buses. This fraction is then modeled by e(f9) = 1 —1.017/%,
implying that higher bus frequencies lead to greater impediments to cars. The speed

function for cars then changes to

Y, car 4. us A
tq,car:tf' (1—1'0(' <l & /CL—|—f bb (k)> )

carlane - C (27)

Yoo
+ G(fq) . Sbusstop : <f((1]’1; . tsb + td) .

B.1.2 Bike parking

In order to include bike parking in our model, we change the on-street parking space

requirements of Equation 24 to
Byparkon - Sreq + Bparkbike - (Sreq/lo) < parklane - w - 1000, (28)

where Bpgipike denotes the number of parking spaces that are needed to allow park-
ing for each bike, and (sy/10) indicates that one bike only requires a tenth of a car

parking space. The maximum number of parked bikes is calculated as

Bparkbike = mafﬁ{ (YPeak,bike - N'Poi + YOF —peak,pike - (dp — n'pou)) (29)

(Yog—peak,bike * VOF—peak + YPeak,bike = (dp = NOF- pear)) }
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The parking cost function of Equation 17 changes to

COStparking = Cparkon * Bparkon + Cparkoff Bparkoﬁ + Cparkbike * Bparkbikea (30)

with cperkpike as the daily costs for construction and maintenance of each bike parking
spot. For simplicity, we assume that the parking duration for cars and bikes is the
same, and that only individuals of Group 1 park their bike on-street. Moreover,
policymakers do not charge parking fees for cyclists.

B.2 Results

B.2.1 Berlin

Table 4: Sensitivity analysis (Berlin)

Scenario PoriTicAL CONSTRAINTS MIXED TRAFFIC ~ CAPACITY REDUCTION BIKE PARKING

No Congestion Toll — No Subsidies Reference Traditional + Space
Social welfare 51473.507 52610.463 51625.507 48247.020 0.000 45483.299
Consumer surplus 27497.546 28276.423 26560.746 25060.533 0.000 25951.568
People 12500 12500 12500 12500 12500 12500
Travelers 12089.455 12093.767 12090.272 12076.615 11899.362 12067.796
Share of space for bicycles 0.463 0.450 0.453 0.433 0.049 0.309
Share of space for buses 0.022 0.022 -0.964 0.021 0.013 0.013
Share of space for cars 0.256 0.277 0.311 0.236 0.626 0.287
Share of space for parking 0.258 0.252 0.235 0.110 0.312 0.390
Bus fare (peak) 0.000 0.000 0.000 0.000 0.324 0.000
Bus fare (off-peak) 0.000 0.000 0.000 0.000 0.324 0.000
Car toll (peak) 0.000 0.672 0.678 0.672 0.000 0.687
Car toll (off-peak) 0.000 0.000 0.000 0.000 0.000 0.000
Parking fee (on-street) 1.424 1.156 1.237 1.615 1.421 2.622
Parking fee (off-street) 0.686 0.447 0.504 0.495 0.000 0.282
Bus frequency (peak) 20.230 19.952 18.515 20.176 12.000 17.859
Bus frequency (off-peak) 17.394 17.369 14.240 17.508 8.000 13.917
Bus size 43.125 43.325 46.785 44.654 62.884 48.976
Number of bus stops 2.743 2.746 2.472 2.762 3.800 2.604
Share of peak travelers 0.508 0.482 0.483 0.483 0.379 0.449
Share of off-peak travelers 0.459 0.486 0.484 0.483 0.573 0.517
Share of non-travelers 0.033 0.032 0.033 0.034 0.048 0.035
Modal share of car (peak) 0.190 0.156 0.153 0.140 0.652 0.180
Modal share of bus (peak) 0.140 0.146 0.146 0.152 0.162 0.159
Modal share of bicycle (peak) 0.670 0.698 0.701 0.709 0.186 0.662
Modal share of car (off-peak) 0.308 0.357 0.351 0.323 0.652 0.363
Modal share of bus (off-peak) 0.148 0.138 0.137 0.145 0.096 0.132
Modal share of bike (off-peak) 0.543 0.505 0.512 0.532 0.252 0.505
Speed of cars (peak) 20.582 39.412 38.902 36.553 16.736 31.999
Speed of buses (peak) 27.509 27.460 24.602 27.072 12.105 21.266
Speed of bicyles (peak) 19.072 18.999 18.995 18.696 8.352 16.892
Speed of cars (off-peak) 46.245 40.225 41.608 37.085 39.394 33.741
Speed of buses (off-peak) 30.876 30.859 27.341 30.566 21.983
Speed of bicycles (off-peak) 19.997 19.997 19.997 19.995 11.626
Used parking spaces (on-street, maximum) 1.000 1.000 1.000 1.000 0.663 0.030
Used parking spaces (on-street, minimum) 0.659 0.960 0.960 0.960 0.445 0.029
Share of on-street parking (peak, all travelers) 0.202 0.220 0.210 0.107 0.063 0.010
Share of on-street parking (off-peak, all travelers) 0.194 0.212 0.202 0.103 0.060 0.009
Net revenue of operating transport systems 295.708 607.081 1242.490 -390.792 -22785.912 -5801.798
Parking system: revenue 10213.237 8026.291 8497.759 7194.363 3287.896 4272.669
Parking system: costs 8305.246 7686.650 7539.467 7614.462 26496.224 10439.917
Toll sy m: net revenue 0.000 1867.419 1848.851 1674.273 0.000 2043.649
Bus system: revenue 0.000 0.000 0.000 0.000 2159.492 0.000
Bus system: costs 1612.282 1599.978 1564.653 1644.966 1737.076 1678.198
Share of Car Parking Space 0.663 0.030
Share of Bike Parking Space 0.337 0.970
Share of Car Parking Space (in p.p.) 0.207 0.012
Share of Bike Parking Space (in p.p.) 0.105 0.378
Number of Car Parking Spaces 135.756 7.725
Number of Bike Parking Spaces 689.937 2482.576

The street space shares are adjusted for car, bus, bike, and parking. Space for pedestrians and others is excluded, but takes up 33 % and 6 % of total street space in reality.
The modal shares are adjusted for the three overground transport modes car, bus, and bike. Overground transport makes up 50.6 % of overall traffic.
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B.2.2 New York City

Table 5: Sensitivity analysis (New York City)

Scenario PoriTicAL CONSTRAINTS MixED TRAFFIC — CAPACITY REDUCTION BIKE PARKING

No Congestion Toll —~ No Subsidies Reference  Traditional + Space
Social welfare 26890.761 28373.912 19148.983 17956.160 0.000 22860.450
Consumer surplus 8857.119 -8390.137 -8704.843 -7899.173 0.000 13126.067
People 14800 14800 14800 14800 14800 14800
Travelers 14591.377 14560.947 14578.813 14561.527 14571.503 14588.697
Share of space for bicycles 0.046 0.051 0.048 0.049 0.012 0.048
Share of space for buses 0.049 0.051 3.578 0.049 0.017 0.016
Share of space for cars 0.703 0.634 0.743 0.607 0.694 0.770
Share of space for parking 0.202 0.264 0.209 0.095 0.277 0.165
Bus fare (peak) 0.000 0.000 0.000 0.000 0.508 0.000
Bus fare (off-peak) 0.000 0.000 0.000 0.000 0.508 0.099
Car toll (peak) 0.000 1.005 1.304 0.750 0.000 0.698
Car toll (off-peak) 0.000 0.000 0.000 0.000 0.000 0.000
Parking fee (on-street) 3.799 3.060 3.028 4.194 3.258 4.053
Parking fee (off-street) 0.462 0.290 0.000 0.302 0.000 0.002
Bus frequency (peak) 49.466 50.033 50.251 12.000 33.677
Bus frequency (off-peak) 41.161 41.517 42.229 8.000 16.666
Bus size 25.859 29.326 29.055 49.904 27.344
Number of bus stops 2.866 2.872 2.884 3.900 2.031
Share of peak travelers 0.703 0.638 0.615 0.651 0.650 0.645
Share of off-peak travelers 0.283 0.345 0.370 0.332 0.335 0.341
Share of non-travelers 0.014 0.016 0.015 0.016 0.015 0.014
Modal share of car (peak) 0.663 0.574 0.600 0.586 0.830 0.709
Modal share of bus (peak) 0.259 0.327 0.306 0.319 0.131 0.203
Modal share of bicycle (peak) 0.078 0.099 0.095 0.095 0.039 0.087
Modal share of car (off-peak) 0.746 0.763 0.812 0.754 0.887 0.834
Modal share of bus (off-peak) 0.207 0.193 0.151 0.200 0.073 0.127
Modal share of bike (off-peak) 0.047 0.044 0.038 0.046 0.040 0.039
Speed of cars (peak) 28.887 37.011 34.819 32.061 18.346 29.926
Speed of buses (peak) 27.685 26.995 24.648 26.908 12.998 22.918
Speed of bicyles (peak) 19.382 19.272 19.308 19.162 12.905 19.426
Speed of cars (off-peak) 54.471 43.744 39.099 44.032 39.246 44.098
Speed of buses (off-peak) 30.869 30.524 27.195 30.420 22.150 29.916
Speed of bicycles (off-peak) 19.998 19.998 19.998 19.998 18.834 19.999
Used parking sp: (on-street, maximum) 1.000 1.000 1.000 1.000 0.900 0.597
Used parking spaces (on-street, minimum) 0.444 0.806 0.940 0.717 0.516 0.397
Share of on-street parking (peak, all travelers) 0.042 0.073 0.058 0.025 0.046 0.022
Share of on-street parking (off-peak, all travelers) 0.041 0.070 0.056 0.024 0.044 0.021
Net revenue of operating transport systems -16287.310 0.000 -7748.019 -9485.839 -33300.858 -24836.178
Parking system: revenue 25159.266 19734.713 8060. 15674.249 8569.177 4521.784
Parking system: costs 37980.812 28318.754 28821.939 30986.344 43400.547 37717.160
Toll system: net revenue 0.000 12244.085 15986.128 9508.951 0.000 10628.328
Bus system: revenue 0.000 0.000 0.000 0.000 3113.623 247.246
Bus system: costs 3465.764 3660.043 2972.844 3682.695 1583.111 2516.376
Share of Car Parking Space 0.900 0.597
Share of Bike Parking Spa 0.100 0.403
Share of Car Parking Space (in p.p.) 0.249 0.099
Share of Bike Parking Space (in p.p.) 0.028 0.067
Number of Car Parking Spaces 163.679 64.707
Number of Bike Parking Spaces 181.023 437.320

The street space shares are adjusted for car, bus, bike, and parking. Space for pedestrians is excluded, but takes up 23.7 % of total street space in reality.
The modal shares are adjusted for the three overground transport modes car, bus, and bike. This overground transport makes up 43.6 % of overall traffic.

o1



References

Agarwal, A, M Zilske, K Rao, and K Nagel (2013). “Person-based dynamic traffic as-
signment for mixed traffic conditions”. In: Conference on Agent-Based Modeling

in Transportation Planning and Operations, pp. 12-11.

Agentur fiir Clevere Stadte (2014). Wem gehért die Stadt? Der Flichen-Gerech-
tigkeits-Report. Mobilitat und Fldachengerechtigkeit. Fine Vermessung Berliner
Strafien. Agentur fir Clevere Stadte, Heinrich Stroflenreuther.

Allen, D. Patrick, Nagui Rouphail, Joseph E. Hummer, and Joseph S. Milazzo
(1998). “Operational Analysis of Uninterrupted Bicycle Facilities”. In: Trans-
portation Research Record 1636.1, pp. 29-36. DOI: 10.3141/1636-05.

Basso, Leonardo J. and Hugo E. Silva (2014). “Efficiency and Substitutability of
Transit Subsidies and Other Urban Transport Policies”. In: American Economic
Journal: Economic Policy 6.4, pp. 1-33. DOL: 10.1257/pol.6.4.1.

Borjesson, Maria, Chau Man Fung, and Stef Proost (2017). “Optimal prices and
frequencies for buses in Stockholm”. In: Economics of Transportation 9, pp. 20—
36. por: 10.1016/j.ecotra.2016.12.001.

Bushell, Max A., Bryan W. Poole, Charles V. Zegeer, and Daniel A. Rodriguez
(2013). Costs for Pedestrian and Bicyclist Infrastructure Improvements. A Re-
source for Researchers, Engineers, Planners, and the General Public. UNC High-

way Safety Research Center.

Dunkerley, Fay, Mark Wardman, Charlene Rohr, and Nils Fearnley (2018). Bus fare
and journey time elasticities and diversion factors for all modes: A rapid evidence
assessment. Santa Monica, CA: RAND Corporation. DOI: 10.7249/RR2367.

Gerike, Regine, Stefan Hubrich, Frank Lielke, Sebastian Wittig, and Rico Wittwer
(2019). Tabellenbericht zum Forschungsprojekt “Mobilitat in Stadten — SrV 2018”
in Berlin. Technische Universitat Dresden, Professur fiir Integrierte Verkehrspla-

nung und Straflenverkehrstechnik.

Gossling, Stefan, Andy Choi, Kaely Dekker, and Daniel Metzler (2019). “The So-
cial Cost of Automobility, Cycling and Walking in the European Union”. In:
Ecological Economics 158, pp. 65-74. DOI: 10.1016/j.ecolecon.2018.12.016.

52


https://doi.org/10.3141/1636-05
https://doi.org/10.1257/pol.6.4.1
https://doi.org/10.1016/j.ecotra.2016.12.001
https://doi.org/10.7249/RR2367
https://doi.org/10.1016/j.ecolecon.2018.12.016

Gragera, Albert and Daniel Albalate (2016). “The impact of curbside parking regu-
lation on garage demand”. In: Transport Policy 47, pp. 160-168. po1: 10.1016/
j-tranpol.2016.02.002.

Greibe, Poul and Thomas Skallebaek Buch (2016). “Capacity and Behaviour on One-
way Cycle Tracks of Different Widths”. In: Transportation Research Procedia 15,
pp. 122-136. por: 10.1016/j.trpro.2016.06.011.

Guzman, Luis A., Carlos A. Moncada, and Santiago Gémez (2018). “Fare discrimi-
nation and daily demand distribution in the BRT system in Bogotd”. In: Public
Transport 10.2, pp. 191-216. por: 10.1007/s12469-018-0181-7.

Hensher, David A. (1998). “Establishing a Fare Elasticity Regime for Urban Passen-
ger Transport”. In: Journal of Transport Economics and Policy 32.2, pp. 221—
246.

Holmgren, Johan and Pernilla Ivehammar (2020). “Mode choice in home-to-work
travel in mid-size towns: The competitiveness of public transport when bicy-
cling and walking are viable options”. In: Transportation Research Procedia 48,
pp. 1635-1643. por: 10.1016/j.trpro.2020.08.204.

Koppelman, Frank S and Chandra Bhat (2006). A self instructing course in mode
choice modeling: multinomial and nested logit models. FTA US Department of

Transportation.

Lehner, Stephan and Stefanie Peer (2019). “The price elasticity of parking: A meta-
analysis”. In: Transportation Research Part A: Policy and Practice 121, pp. 177—
191. por: 10.1016/j.tra.2019.01.014.

Litman, Todd (2022). Understanding Transport Demands and Elasticities. How Prices
and Other Factors Affect Travel Behavior. Victoria Transport Policy Institute.

Litman, Todd and Eric Doherty (2009). “Parking Costs”. In: Transportation Cost
and Benefit Analysis: Techniques, Estimates and Implications. 2nd ed. Victoria
Transport Policy Institute. Chap. 5.4, pp. 5.4.1-5.4.29.

Nobis, Claudia and Tobias Kuhnimhof (2018). Mobilitdt in Deutschland — MiD
Ergebnisbericht. Infas, DLR, IVT, und infas 360 im Auftrag des Bundesministers
fiir Verkehr und digitale Infrastruktur (FE-NR. 70.904/15).

93


https://doi.org/10.1016/j.tranpol.2016.02.002
https://doi.org/10.1016/j.tranpol.2016.02.002
https://doi.org/10.1016/j.trpro.2016.06.011
https://doi.org/10.1007/s12469-018-0181-7
https://doi.org/10.1016/j.trpro.2020.08.204
https://doi.org/10.1016/j.tra.2019.01.014

NYC DOT (2019). Citywide Mobility Survey 2019 — Survey User Guide. New York
City, Department of Transportation.

Parry, Tan W. H. and Kenneth A. Small (2009). “Should Urban Transit Subsidies
Be Reduced?” In: American Economic Review 99.3, pp. 700-724. por: 10.1257/
aer.99.3.700.

Paulsen, Mads, Thomas Kjer Rasmussen, and Otto Anker Nielsen (2019). “Fast
or forced to follow: A speed heterogeneous approach to congested multi-lane

bicycle traffic simulation”. In: Transportation Research Part B: Methodological
127, pp. 72-98. por: 10.1016/j.trb.2019.07.002.

Steck, Felix, Viktoriya Kolarova, Francisco Bahamonde-Birke, Stefan Trommer, and
Barbara Lenz (2018). “How Autonomous Driving May Affect the Value of Travel
Time Savings for Commuting”. In: Transportation Research Record 2672.46,
pp. 11-20. por: 10.1177/0361198118757980.

Transportation Alternatives (2021). NYC 25225 — A Challenge to New York City’s
Next Leaders to Give Streets Back to People. Transportation Alternatives, New
York City.

U.S. Department of Transportation (2022). Benefit-Cost Analysis Guidance for Dis-
cretionary Grant Programs. Office of the Secretary, U.S. Department of Trans-

portation.

Wardman, Mark, V. Phani K. Chintakayala, and Gerard de Jong (2016). “Values of
travel time in Europe: Review and meta-analysis”. In: Transportation Research
Part A: Policy and Practice 94, pp. 93-111. por: 10.1016/j.tra.2016.08.019.

54


https://doi.org/10.1257/aer.99.3.700
https://doi.org/10.1257/aer.99.3.700
https://doi.org/10.1016/j.trb.2019.07.002
https://doi.org/10.1177/0361198118757980
https://doi.org/10.1016/j.tra.2016.08.019

	Introduction
	Theoretical Model
	Model introduction
	Model scope
	Demand
	Monetary costs of traveling
	Transport times
	Car
	Bus
	Bike

	Revenue and operational costs
	Consumer surplus and social welfare function
	Optimization constraints

	Analysis
	Setting
	Model calibration
	Main scenarios
	The impact of street space allocation on economic efficiency
	Main results for Berlin
	Analysis of the underlying economic channels of impact
	The efficient street space allocation in Berlin

	Main results for New York City
	Analysis of the underlying economic channels of impact
	The efficient street space allocation in New York City

	Sensitivity analysis
	Additional scenarios
	Results


	Discussion and Conclusion
	Impact on congestion
	Further implications of efficient street space allocation
	Model limitations
	Conclusion

	References
	Model Calibration
	Parameter values from travel surveys and the related literature
	General parameters
	Transport time parameters
	Welfare function parameters
	Street space allocation

	Parameter calibration
	Checking the validity of the calibration

	Sensitivity analyses
	Model implementation
	Mixed traffic for cars and buses
	Bike parking

	Results
	Berlin
	New York City



